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“All bodies have some dependence upon one another”  

  

R. Bradley (1721) in A philosophal account of the works of nature. 
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"Every man on that transport died. Harry wasn't there to save them 
because you weren't there to save Harry."  

 
 

Henry Travers in Franck Capra’s film “It’s a Wonderful Life” (1946)  
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Introduction 
  
 

Toutes les espèces sont amenées à s’éteindre, par le jeu de l’Evolution et de la lutte pour 

l’existence. Mais depuis l’apparition de  l’homme, les extinctions s’accélèrent. Ainsi, depuis 

le XVième siècle on a enregistré l’extinction d’au moins 486 espèces animales (tous taxa 

confondus) et on sait qu’au moins 600 espèces végétales se sont éteintes (Smith et al ., 1993), 

principalement dans des régions du globe colonisées par l’homme ces 400 dernières années.  

Au cours du XXième  siècle, on estime ainsi que le taux d’extinction est dix fois supérieur à 

celui du siècle précédant (Pimm, 1998). C’est dans ce contexte d’érosion de la biodiversité 

qu’est née la Biologie de la Conservation. 

  

Même si l’extinction de toute espèce ou population est certaine à long terme (Gosselin, 

1997), l’objectif de la Biologie de la Conservation est de limiter les effets de la « crise de la 

Biodiversité », soit en préservant l’habitat et les écosystèmes, soit en se focalisant sur des 

espèces particulières et en les classant  en fonction de leur risque de disparition pour 

déterminer les priorités des programmes de conservation à mettre en place. Pour ce faire, on 

utilise notamment l’Analyse de Viabilité des Populations (« Population Viability Analysis », 

PVA : Soulé 1987), qui vise à déterminer par des modèles la probabilité de persistance - ou 

d’extinction - d’une population (Lebreton, 2000a) sur un pas de temps défini (par exemple sur 

100 ans), ou bien à déterminer des critères de viabilité des populations (comme l’effectif 

initial de la population) assurant une probabilité de survie élevée sur un pas de temps suffisant 

(Shaffer,1981).  

 

Les modèles utilisés, que l’on peut replacer dans le cadre général des analyses de risque 

(Shaffer, 1990), ne doivent pas être employés comme des outils calculatoires, dont le but est 

d’obtenir des probabilités d’extinction faisant valeur de références : les jeux de données sont 

souvent incomplets et les modèles basés sur des hypothèses non vérifiées ou trop simplistes 

(Reed et al., 2002 ; Ludwig, 1999). Les études de terrain sont souvent trop courtes (études sur 

quelques générations) pour détecter des évènements rares ou quantifier l’intensité de la 

densité-dépendance (Brook, 2000).  Il en résulte une sous-estimation des probabilités 

d’extinction (Taylor, 1995) qui  peut parfois conduire à des prises de décisions totalement 

inadaptées. Ce type d’erreur est commun à toutes les analyses de risque faible. Un exemple 

célèbre d’une erreur d’analyse de risque aux conséquences dramatiques  est celui de la navette 
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Challenger (Dalal et al., 1989). La navette Challenger a explosé le 28 janvier 1986, quelques 

minutes seulement après son décollage. L’enquête menée pour déterminer les causes de 

l’accident a conclu à la défaillance d’un joint assurant l’étanchéité d’un des moteurs. Une 

analyse de risque menée après l’accident a montré qu’avec les données disponibles au 

moment du décollage, la probabilité de  défaillance  de cette pièce était de 0,13. Or une 

mauvaise sélection des données avait permis de conclure qualitativement à l’absence de 

risque au décollage. 

La grande difficulté en analyse de risque provient de la multitude de facteurs à prendre 

en compte. Il faut déterminer de manière pertinente lesquels semblent être les plus importants,  

s’assurer qu’aucun facteur de risque majeur n’a été omis et que les probabilités d’évènements 

associés aux différents facteurs sont correctement évaluées. Dans le contexte des risques 

faibles -cadre naturel des modèles d’extinction- les hypothèses d’indépendance entre 

évènements sont cruciales car les probabilités faibles sont fortement sensibles à un écart à de 

telles hypothèses. La probabilité d’occurrence simultanée de deux évènements indépendants 

de probabilité 10-3, comme la défaillance simultanée des deux moteurs d’un avion par 

exemple, est de 10-6. Mais si la corrélation entre les deux évènements est de 0,5, la probabilité 

simultanée devient voisine de 0,0005. L’écart à l’indépendance multiplie donc le risque par 

50.  Pourtant, en biologie de la conservation, les modèles d’Analyse de Viabilité des 

Populations postulent l’indépendance des individus dans la réalisation des processus 

démographiques (Engen et al., 1998). Par exemple la survie des individus est souvent 

modélisée de la manière suivante: chaque individu pris séparément a une probabilité p  de 

survie, indépendamment de la survie des autres individus.  

 Ceci ne semble pas forcément être le cas dans les conditions naturelles: les populations 

présentent souvent des fluctuations d’effectifs importantes d’une année sur l’autre, dues 

parfois à des variations de conditions climatiques, à des épidémies… Dans de telles situations, 

tous les individus de la population réagissent de la même manière : le devenir d’un individu 

n’est plus indépendant de celui des autres et la survie générale augmente ou diminue 

brusquement. Toutes les interactions entre individus ne sont pas généralisées à l’ensemble de 

la population : souvent certains individus sont plus particulièrement liés entre eux qu’avec le 

reste de la population. Chez le Méliphage casqué (Lichenostomus melanops cassidix), la 

survie des femelles diminue lorsque leur partenaire meurt. La survie des femelles est donc 

corrélée à celle des mâles. McCarthy (1994), en incorporant ce facteur dans la construction 

d’un modèle de PVA, montre qu’il augmente la probabilité d’extinction de cette population. 

Tous ces comportements contredisent l’hypothèse d’indépendance des individus. Cette 
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hypothèse est lourde, et son influence sur les estimations de probabilités d’extinction des 

populations mérite donc d’être évaluée. 

 

L’objectif général de cette étude est donc de vérifier la pertinence de l’hypothèse 

d’indépendance entre individus dans les Analyses de Viabilité des Populations, qui nous 

semble être une des causes majeures de sous estimation des risques d’extinction, et d’évaluer 

l’effet d’écarts plausibles à cette hypothèse. Ce travail a été réalisé dans le cadre d’un stage de 

recherche du DEA de Biologie de l’Evolution et Ecologie, à Montpellier, au sein de l’équipe 

de biométrie (appartenant au Centre d’Ecologie Fonctionnelle et Evolutive CEFE-CNRS 

UMR 5175), sous la direction de Jean-Dominique Lebreton. La première étape consiste à 

choisir un  modèle d’Analyse de Viabilité des Populations, en fonction de ses propriétés et des 

paramètres que l’on peut y incorporer. Un modèle approprié à ce type d’étude est le processus 

de ramification densité-indépendant, utilisé pour la première fois par Galton et Watson (1874) 

dans l’étude des lignées de grandes familles et de leur  extinction. 

Il faut ensuite classer les types de dépendances de façon opératoire : nous distinguerons   

une dépendance généralisée à l’ensemble des individus d’une population, d’intensité variable 

dans le temps, et qui provoque de grandes fluctuations d’effectifs au cours du temps, et une 

dépendance entre certains individus d’une population, due à leurs interactions sociales.  

Pour étudier l’influence d’une dépendance générale entre tous les individus sur les 

risques d’extinction d’une population, on incorpore un indice de corrélation entre individus 

dans un  processus de ramification densité-indépendant, puis densité-dépendant. L’approche 

utilisée pour quantifier l’effet de la corrélation entre individus sur les risques d’extinction des 

populations repose sur la notion d’effectif efficace d’extinction, développée par Niel (2000), 

dans laquelle l’effectif µ de la population étudiée est comparé à l’effectif µ’ d’une population 

de référence qui aurait la même probabilité d’extinction. Les espèces ou populations 

concernées par des mesures de conservation ont rarement de forts effectifs. Bien au contraire, 

celles que l’on considère en danger d’extinction ont le plus souvent de faibles effectifs. Cela 

crée un effet Allee (Courchamp et al, 1999); un affaiblissement des paramètres 

démographiques avec la diminution de l’effectif de la population et augmente fortement le 

risque d’extinction de la population. On modifie notre modèle de façon à prendre en compte 

un effet Allee : le processus de ramification incorpore en même temps une dépendance 

généralisée entre individus et un effet Allee, et l’on étudie l’interaction entre ces deux 

facteurs.  
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Dans le cas de dépendances non généralisées à l’ensemble de la population, un exemple 

d’interactions fortes entre individus est la dépendance des jeunes vis-à-vis de leurs parents, 

durant les premiers temps de leur vie. Ils sont nourris et protégés par leurs parents, et leur 

survie est totalement liée à celle de leurs parents. Ce type d’interactions non généralisées à 

l’ensemble de la population et persistantes dans le temps modifie-t-il les résultats des analyses 

de risque  des populations ?  

A partir d’une étude de cas, celui de l’Albatros d’Amsterdam, il est intéressant 

d’incorporer séparément et simultanément les différentes formes de dépendance entre 

individus étudiées précédemment, et de comparer leurs effets propres et cumulés sur le temps 

d’extinction de la population estimé par le modèle. L’Albatros d’Amsterdam appartient à la 

famille des Diomedeidae, qui regroupe 21 espèces d’Albatros (BirdLife International). Lors 

du dernier rapport de l’UICN, 17 espèces ont été classées comme vulnérables ou menacées 

d’extinction. Les Albatros font l’objet de nombreuses études de conservation et de dynamique 

de populations, en particulier pour juger de l’impact de la pêche palangrière sur les 

populations. Il s’agit d’espèces particulièrement sensibles, et toute sous-estimation de leur 

risque d’extinction pourrait se révéler désastreuse pour leur survie. Une autre caractéristique 

qui rend leur étude intéressante concerne leur biologie complexe et leur longévité extrême 

(certains individus pouvant atteindre jusqu’à 50 ans), cela en fait d’excellents candidats dans 

les études de dépendance particulière entre individus, et en particulier deux types de 

dépendances : le fait que chaque poussin reste dépendant de ses parents pendant pratiquement 

une année et que les couples se forment pour toute la vie des partenaires. L’Albatros 

d’Amsterdam est un exemple type d’une petite population (à peine une centaine d’individus) 

isolée sur l’île d’Amsterdam, et dont la persistance dans le temps est sujette à nombre de 

discussions (Weimerskirch et al., 1997). 
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A- LES MODELES D’EXTINCTION AU SERVICE DE LA CRISE DE LA 
BIODIVERSITE 

 
1- Quelques repères sur l’extinction 

 
 
 

 
Avant d’étudier plus en détails les différents modèles permettant d’estimer les temps 

d’extinction ou de persistance d’une espèce donnée, il semble nécessaire de définir les notions 

d’espèce et d’extinction. En effet, même si elles peuvent paraître triviales et connues en 

premier abord,  elles n’en demeurent pas moins encore à l’heure actuelle sujettes à 

controverses.  

 
 

1-1 Rappels sur la notion d’espèce et d’extinction 
 

On distingue classiquement  trois concepts  d’espèce. La plus ancienne notion d’espèce 

est l’espèce typologique, qui remonte à Linné et Buffon  au 18ème siècle (Mayr, 1982); ils 

conçoivent l'espèce comme représentant un groupe (une population) d'individus semblables, 

indépendamment de leur âge ou de leur sexe, cette similarité étant d'ordre morphologique et 

structurale. L’espèce typologique est avant tout une méthode pratique de classification des 

objets biologiques, sans idée évolutionniste à la base. Il s’agissait au départ avant tout d’un 

outil permettant de nommer des ensembles pour les manipuler. Cette définition typologique 

est toujours utilisée actuellement, elle est la base de la taxinomie et des reconstructions 

phylogénétiques, aussi bien à partir de critères morphologiques que moléculaires. En effet, les 

reconstructions des arbres du vivant à partir des séquences d’ADN se fondent elles aussi sur 

l’étude des similarités et différences  non pas de caractères morphologiques mais de 

séquences en acides nucléiques entre espèces. 

A cette conception typologique s’oppose la conception biologique de l’espèce, définie 

en particulier par Mayr (1975) comme des « Groupes de populations naturelles qui se 

reproduisent réellement (ou potentiellement) par croisement et qui sont isolées d'autres 

groupes ». Dans cette seconde conception de l’espèce, le critère primordial d’espèce n’est pas 

la ressemblance ou différence entre individus mais la possibilité de flux de gènes entre 
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individus ou populations. Deux populations sont des espèces différentes s’il n’existe pas 

d’échanges génétiques entre elles, donc s’il existe un isolement reproducteur entre les 

individus de chaque population. Cette définition de l’espèce est celle qui a ouvert la voie aux 

recherches sur les mécanismes de spéciation et la mise en place d’isolements reproducteurs.  

Enfin, issue de la théorie synthétique de l’Evolution, et tentant d’englober les 

conceptions descriptives et biologiques de l’espèce, et surtout d’y ajouter une échelle 

temporelle, une conception évolutive de la notion d’espèce a émergé dans les années 60, 

initiée par Simpson (1961), et reprise par Wiley (1981), qui définit une espèce évolutive 

comme « une lignée évolutive formée de populations ancestrales et de leurs descendants qui 

est distincte des autres lignées évolutives et qui a son propre destin ». Cette définition de 

l’espèce sous-tend l’idée même d’extinction puisqu’elle mentionne des populations 

ancestrales et ses descendants. 

 

 

 La difficulté à définir précisément une espèce n’est pas sans conséquences en biologie 

de la conservation, en particulier lorsque se pose le problème de la détermination du risque 

d’extinction et du choix des individus, groupes, populations ou espèces à préserver. Ainsi 

l’exemple qui sera traité par la suite, l’Albatros d’Amsterdam (Diomedea amsterdamensis) 

n’a été découvert en tant qu’espèce qu’en 1983 (Roux et al.). Il a été longtemps confondu 

avec l'Albatros hurleur (Diomedea exulans) et ce ne fut qu’après des analyses morphologiques 

et comportementales poussées qu’il fut considéré comme une espèce différente et non une 

sous-espèce ou une simple population. Or actuellement il n’en reste plus qu’une centaine 

d’individus, et c’est bien grâce à son statut d’espèce que furent prisent des mesures de 

protections importantes (notamment un accès très restreint aux sites de nidification) afin de 

diminuer son risque d’extinction. Le concept de l’espèce évolutive n’est pas celui qui est 

utilisée préférentiellement dans les programmes de conservation, où l’échelle de temps n’est 

pas géologique mais de l’ordre de quelques siècles au maximum, on se réfère plutôt à la 

définition biologique de l’espèce. Par contre, cette définition évolutive pose le problème 

même de notion de conservation des espèces, de son bien-fondé puisque toute espèce est 

amenée à disparaître. D’ailleurs ce débat est toujours d’actualité. 

 

Il parait en revanche assez naturel et simple de définir l’extinction d’une espèce comme 

étant la disparition du dernier individu de cette espèce, et l’extinction d’une population de la 

même façon, c’est-à-dire comme étant la disparition du dernier individu de cette population. 
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Là encore, certains auteurs attribuent un autre sens au mot extinction : celle d’extinction 

écologique (Redford, 1992). Il considère en effet que même si une espèce donnée subsiste, 

elle est en effectifs tellement réduits qu’elle ne joue plus son rôle habituel dans l’écosystème. 

Cette définition, comme nous le verrons par la suite, n’est pas celle qui est reconnue et utilisée 

dans les programmes de conservation actuellement, elle n’est pas non plus celle sur laquelle le 

travail de cette thèse se fondera, pour la simple raison qu’il est actuellement très difficile de 

quantifier le rôle d’une espèce au sein de son écosystème, et donc d’avoir une évaluation 

précise et  mesurable de l’extinction selon cette définition. Elle n’en reste pas moins 

pertinente puisqu’elle replace une espèce dans son environnement, alors que beaucoup de 

mesures de conservation se focalisent sur une espèce donnée, quelque soit son environnement 

et son impact sur celui-ci. 

 

D’un point de vue évolutif, la notion d’extinction existe au moins depuis Darwin et la 

publication de l’Origine des Espèces (1859). Cette notion d’extinction est inhérente même à la 

notion d’espèce et d’évolution. Puisque toutes les espèces sont issues d’un même ancêtre, il y 

a donc succession des espèces au cours du temps, et forcement extinction des espèces ancêtres 

à un moment donné. Pourquoi donc s’intéresser alors aux risques d’extinction à l’heure 

actuelle ?   A-t-on des arguments suffisants pour penser que le rythme des extinctions s’est 

accéléré depuis l’apogée de l’espèce humaine ?  
 
 
 
 

1-2 Accélération du rythme des extinctions 
 

Depuis une trentaine d’année, la communauté biologique s’inquiète d’une grande 

dégradation de l’environnement et de la perte de biodiversité qu’elle entraîne. Pour étayer ces 

propos, de nombreux travaux ont cherché à estimer et comparer les taux d’extinction à 

différents moments de l’histoire du vivant.  

  Comme le laisse entendre la définition d’espèce évolutive, l’extinction des espèces est 

inévitable, ce que prouvent d’ailleurs les études des fossiles. En effet les paléontologues 

estiment que 99.9% des espèces qui ont vécu sur terre depuis l’apparition de la vie il y a trois 

milliards et demi d’années, ont péri (Raup, 1993). Mais ces disparitions d’espèces ne sont pas 

linéaires et constantes : on distingue des périodes d’extinctions massives que l’on nomme 

crises majeures d’extinction, et des périodes de taux d’extinction plus faible (dénommé taux 

d’extinction basal), de l’ordre de quelques espèces par siècle (Ramade, 1993). Jusqu’à 
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présent, l’histoire de la vie sur terre a été ponctuée par cinq crises majeures d’extinction. Entre 

65% et 85% des espèces animales marines se sont éteintes à l’Ordovicien (500 millions 

d’années -Ma), au Dévonien (345 Ma), au Trias (180 Ma) et au Crétacé (65 Ma). La plus 

importante crise est l’extinction permienne (250 Ma) où 95% des espèces se seraient éteintes.  

Finalement on estime la durée de vie moyenne d’une espèce fossile à 10 millions d’années 

(Raup, 1993). 

 Par opposition au rythme d’extinction des espèces fossiles, il s’éteint au cours du siècle 

précédant une espèce d’oiseau ou de mammifère chaque année (Leakey et Lewin, 1997). Si 

l’on considère que ces deux groupes d’animaux comportent respectivement quelques 10 000 

et 5 000 espèces, la durée de vie moyenne d’une espèce serait actuellement de 10 000 soit 

mille fois moins que la durée de vie d’une espèce fossile. Cette accélération du phénomène 

caractérise la phase actuelle d’extinction amorcée il y a 100 000 ans, lors de l’extension de 

l’aire de répartition de l’homme, que l’on dénomme « sixième extinction de masse » (Leakey 

et Lewin, 1997). Mais la phase critique de ce phénomène date essentiellement du XXème  

siècle en raison de la nature exponentielle de la croissance démographique humaine : la moitié 

des extinctions connues depuis 1 600 ans sont intervenues au XXème  siècle (Smith et al., 

1993). Certains chercheurs pensent qu’au cours des 50 prochaines années, la moitié des 

espèces actuelles de vertébrés pourraient être amenées à disparaître (Pimm, 1998).  

 

Cette véritable crise de la biodiversité comme on la nomme encore actuellement a donné 

naissance à une discipline scientifique ; la biologie de la conservation. La biologie de la 

conservation repose principalement sur l'analyse des processus de maintien de la biodiversité, 

à différents niveaux spatio-temporels et écosystémiques, afin de fournir des éléments 

tangibles pour la gestion conservatoire et durable des espèces, des communautés, des 

écosystèmes et des paysages (Burgman et al ., 1993). Un des premiers objectifs de la biologie 

de la conservation consiste donc à comprendre le phénomène d’extinction, et à identifier les 

principaux facteurs de risques.  

 

 

1-3  Les facteurs responsables des extinctions 

 

L’extinction d’une espèce s’opère en deux temps : il se produit d’abord une réduction 

drastique des effectifs des populations qui constituent l’espèce et, une fois les effectifs 
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restreints, cette espèce devient vulnérable à certains facteurs endogènes qui peuvent réduire 

totalement ses effectifs, même en l’absence de facteurs exogènes.  

La principale raison de l’accélération constatée des extinctions vient de la destruction 

massive d’habitat (Wilcowe et al., 1998). Celle-ci s’opère sous la pression démographique 

humaine, que ce soit par réduction de la superficie totale (destructions de fragments entiers 

d’habitat), par fragmentation (qui accompagne par exemple la construction de routes et 

d’autoroutes), par détérioration de parcelles d’habitat (par exemple par pollution de nappes 

phréatiques), ou par détérioration des espaces situés entre les habitats favorables (par exemple 

la mise en place de milieux interdisant le passage des individus migrateurs). Or les effectifs 

des populations naturelles augmentent avec la surface qu’elles peuvent occuper (Mac Arthur 

et Wilson, 1967). La dégradation des habitats et la fragmentation qui l’accompagne 

nécessairement constituent donc une réelle menace pour les espèces, en ceci qu’elles 

contribuent à la diminution des effectifs des populations qui les composent. D’autres causes 

d’extinctions tout aussi imputables à l’homme existent ; la chasse, l’introduction d’espèces 

invasives et la pollution. De plus, il est probable qu’à l’avenir l’impact du changement 

climatique global viendra s’ajouter aux déjà nombreux facteurs humains responsables de 

réductions drastiques d’effectifs de populations. 

 

Lorsque ces espèces atteignent de petits e
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Un deuxième effet est lié aux facteurs environnementaux (ou stochasticité 

environnementale). Ce processus est du aux changements cycliques mais non prévisibles du 

milieu (années particulièrement sèches ou humides, intempéries..), qui modifient alors les 

paramètres démographiques d’une population. Toujours dans notre exemple de taux de survie 

des individus d’une population de 0,7 en moyenne sur une dizaine d’années. Si une année il se 

produit une forte sécheresse, cette survie diminuera avec la sévérité de la sécheresse pour 

toute la population, et sera alors par exemple de 0,4. Si quelques années plus tard il se trouve 

au contraire qu’il s’agit une année particulièrement abondante en nourriture, alors cette fois la 

survie globale de la population sera élevée, de 0,8 par exemple. Si cette espèce présente une 

large répartition géographique, toutes les populations ne seront pas soumises aux mêmes 

contraintes du milieu en même temps. En revanche, si sa population n’est plus très 

importante, un événement climatique extrême touchera tous les individus de la population et 

le risque d’extinction sera d’autant plus important.  

Un dernier facteur est d’ordre génétique. Chez une espèce diploïde, la  dérive génétique 

c’est-à-dire la variation aléatoire de la diversité génétique ou de l’hétérozygotie au cours du 

temps, peut aboutir à une perte progressive de diversité génétique, en l’absence 

d’immigration. Les effets de la dérive sont donc plus importants dans les petites populations, 

pour lesquelles les pertes aléatoires d’allèles d’une génération à l’autre ne sont pas 

compensées par suffisamment de mutations. Un résultat classique de ce modèle est la fameuse 

règle des « 500 » suivant laquelle les populations ayant une taille efficace (Frankel et Soulé, 

1981) supérieure à 500 ne souffriraient pas des effets de la dérive génétique. Un deuxième 

danger génétique encouru par les petites populations est la dépression de consanguinité. La 

consanguinité, quantifiée par le taux de consanguinité, résulte de l’accouplement de deux 

individus apparentés, voire d’autofécondation. Les deux parents étant eux-mêmes apparentés, 

ils ont plus de chances d’avoir des allèles communs que des parents non apparentés : la 

consanguinité  a donc tendance à réduire le taux d’hétérozygotie et à entraîner une baisse de 

viabilité des individus consanguins. D’après des expériences menées en captivité, le taux 

d’extinction d’une lignée est positivement corrélé au taux de consanguinité. C’est sur cette 

base que Frankel et Soulé (1981) ont recommandé de préserver au moins 50 individus pour 

éviter que la dépression de consanguinité ne soit trop menaçante.  
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1-4 Pourquoi protéger les espèces ? 
 

Une raison évidente qui peut justifier de la préservation des espèces est que chaque 

espèce est unique, issue d’un long processus évolutif unique et qu’une fois éteinte, l’espèce a 

une probabilité nulle de réapparaître (Darwin 1859, p370) : l’extinction d’une espèce est 

irréversible. Il s’agit aussi d’un argument contradictoire : chaque est espèce est unique d’un 

point de vue évolutif certes, mais chaque espèce est aussi indéniablement vouée à s’éteindre. 

Les espèces sauvages ont aussi un intérêt économique et sanitaire pour l’homme : par 

exemple la préservation d’espèces proches de celles cultivées par l’homme permettrait  non 

seulement de cultiver de nouvelles espèces mais aussi de conserver l’information génétique 

utilisable plus tard au sein des espèces domestiques. Les applications en pharmacologie et 

dans d’autres industries sont aussi très importantes.  

D’autre part les biologistes craignent que l’équilibre des écosystèmes ne soit menacé par 

la disparition d’un grand nombre de populations qui, rappelons-le sont les sous-unités de 

l’écosystème. Or la qualité de notre vie est liée à certains services rendus par les écosystèmes 

(par exemple la régulation des flux hydriques,  le maintien de la qualité des sols, de l’eau, de 

la terre, la lutte contre l’érosion…) que nous ne saurions probablement pas remplacer. Or 

notre connaissance des écosystèmes n’est pas assez poussée pour prédire dans quelles 

conditions leur fonctionnement est menacé.   

Des motifs plus désintéressés peuvent aussi  nous conduire à vouloir préserver les 

espèces : reposant sur des valeurs humaines dépassant la recherche d’intérêts (Bourg, 1996) 

ou sur des systèmes de valeurs accordant aux espèces sauvages des droits indépendamment de 

l’homme.  Toutefois, quelque soit la raison pour laquelle nous cherchons à protéger les 

espèces d’extinction, il se pose toujours le problème des espèces qui s’éteignent 

naturellement, pour autant que l’on puisse déterminer qu’une extinction est naturelle. Avant 

de juger de ces considérations, il est d’abord utile de juger du risque ou non d’extinction 

d’une espèce et des facteurs responsables de ce risque élevé, à l’aide de modèles d’extinction.  
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2- Les modèles d’extinction 
 

2-1 Rôles des modèles d’extinction 
 

On appelle modèle d’extinction un modèle soit explicite (c’est-à-dire dont le résultat est 

obtenu de manière formelle sous forme d’équation mathématique) soit basé sur les 

simulations, et qui a pour but de prédire la viabilité d’une espèce ou d’une population, c'est-à-

dire sa persistance dans le temps. De telles modèles sont aussi appelés Analyse de Viabilité 

des Populations (AVP ou PVA en anglais).  

 

Ils ont deux intérêts principaux : d’une part ils aident à déterminer le statut d’une 

espèce : plus le temps d’extinction est faible, plus son risque d’extinction est important. On 

estime son temps d’extinction c’est-à-dire le temps minimum pour atteindre un effectif nul de 

population (avec une certaine probabilité). Ainsi par exemple une espèce sera classée dans la 

catégorie gravement menacée d’extinction si une analyse quantitative montre que la 

probabilité d'extinction à l'état sauvage est d'au moins 50% en l'espace de 10 ans ou de 3 

générations (prise en compte du délai le plus long) (UICN).  

 

D’autre part,  une fois une espèce classée comme menacée d’extinction, il s’agit de 

trouver des critères de viabilité. Pour ce faire, à partir des modèles utilisés dans ce premier 

temps pour estimer le temps d’extinction, on modifie certains paramètres du modèle (par 

exemple la survie des jeunes, ou des adultes, ou la fécondité…) et on quantifie l’effet d’une 

telle modification sur le devenir de la population. Il est ainsi possible de déterminer les 

facteurs pertinents qui influencent le plus son risque d’extinction, afin essentiellement de 

trouver des mesures de conservation. Concrètement, on va déterminer un critère de viabilité 

(par exemple « 95% de chances de survie sur 200 ans ») et chercher quelles modifications 

peuvent être apportées aux performances démographiques de l’espèce pour satisfaire ce 

critère, comme par exemple diminuer la prédation sur une catégorie de la population, ou 

augmenter la reproduction (par exemple en captivité) (Boyce, 1992). 
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Une fois reconnus les différents rôles des modèles d’extinction, l’utilisateur se trouve 

face à une grande diversité de choix, les formes de ces modèles variant amplement d’un cas à 

l’autre: en général ils se fondent sur une base démographique, sur laquelle viennent se greffer 

des aspects écologiques, génétiques…Il n’existe pas de règles ou de structures déterminées 

pour construire de tels modèles (Boyce, 1992). 

 

2-2  Les différents modèles d’extinction 
 

Le principe des modèles d’extinction est de simuler les effectifs d’une espèce ou d’une 

population à partir des informations connues sur cette espèce ou population (en particulier les 

paramètres démographiques tels que les taux de survie et fécondité). Les modèles d’extinction 

se confondent souvent avec les modèles démographiques puisque une espèce ou population 

est considérée comme éteinte lorsque ses effectifs sont nuls.   
 

Assez souvent, surtout au début de l’utilisation des modèles en biologie de la 

conservation, des modèles adoptant des formes classiques en dynamique des populations ont 

été utilisés pour étudier la viabilité de populations.  Les modèles matriciels (Caswell, 2001) 

ont ainsi été mis à contribution. Dans ce type de modèles, le temps est discret, les effectifs de 

la population sont divisés en catégories définies selon l’âge, la taille, ou des lieux différents 

(Lebreton, 2000a) et sont des grandeurs continues. La caractéristique des ces modèles est que 

la taille de la population au temps t, Zt dépend de Zt-1, l’état de la population au pas de temps 

précédant, par une relation matricielle simple : Zt = At Zt-1, ou At est une matrice positive. Ce 

genre de modèles très simples  permet de grandes applications biologiques et une grande 

facilité d’utilisation. La matrice A est construite à partir des paramètres démographiques des 

populations étudiées (survie, reproduction), elle peut varier dans le temps, en utilisant des 

matrices A non pas constantes mais temps dépendantes (At) et donc incorporer de la 

stochasticité environnementale. On peut aussi faire varier au sein de chaque matrice les 

paramètres démographiques en ne les traitants non pas comme des scalaires mais comme des 

tirages de variables aléatoires (stochasticité démographique). Toutefois, ces modèles bien que 

très pratiques et très utilisés en démographie, ne présentent pas de solutions explicites du 

risque d’extinction mais uniquement des études par simulations. De plus, la population étant 

définie de manière continue et non discrète, il se pose le problème de définir explicitement 

l’extinction, car un effectif nul sera rarement atteint mais des effectifs inférieurs à un 

individus peuvent être atteints.  
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Un des premiers modèles considérés en écologie pour traiter explicitement du problème 

de l’extinction est ce qu’on appelle en mathématiques le processus de naissance et de mort 

(Mac Arthur et Wilson, 1967). Dans ces modèles, le temps est continu (et non discret comme 

dans les modèles matriciels), et l’état de la population au temps t, Zt est lui discret. Dans ce 

type de modèles, la définition de l’extinction ne pose pas de problèmes : il s’agit d’avoir des 

effectifs nuls, ce qui est possible puisque la population est une variable discrète. Souvent Zt 

est une variable aléatoire entière positive qui représente l’effectif de la population au temps t. 

Ces modèles permettent une solution explicite de la probabilité d’extinction, sous la forme 

d’une équation de diffusion (Feller, 1968). Le problème majeur de ces modèle est la 

complexité de l’outil mathématique demandé : la théorie de la diffusion n’est pas accessible à 

tout biologiste mais demande de très solides connaissances mathématiques, et donc cette 

technique a peu de chance d’être répandue et utilisée en biologie de la conservation. De plus, 

il s’agit de modèles assez rigides, qui incorporent difficilement certains facteurs biologiques 

comme la saisonnalité, la structure en classes d’âge de la population, l’environnement 

aléatoire…C’est pourquoi ils sont surtout utilisés en biologie théorique.  

 

Une dernière classe de modèles utilisés en biologie de la conservation est les processus 

de ramification. Il s’agit de processus stochastiques en temps discret, basés sur des effectifs 

discrets de population (donc ne posant pas de problèmes pour définir l’extinction). Le passage 

du temps t au temps t+1 se fait de la manière suivante : dans une population de Zt individus au 

temps t, chaque individu est remplacé au temps t+1 par un nombre aléatoire, issu d’une 

distribution de probabilité calculée à partir de la survie et du taux de reproduction de 

l’individu considéré, ceci de manière indépendante du remplacement des autres individus. Ce 

genre de modèles permet d’obtenir une solution explicite du risque d’extinction et des 

vérifications par simulations. De plus, il est aisé d’y incorporer des paramètres biologiques 

plus complexes (structure en classe d’âges, de taille, saisonnalité…) Enfin, il prend en compte 

de manière explicite la stochasticité démographique ce qui a un intérêt non négligeable en 

PVA où l’on a souvent à traiter le cas de petites populations : on ne peut négliger l’effet de la 

stochasticité démographique. Dès lors, les effectifs d’une population suivent des trajectoires 

stochastiques, et chaque répétition du modèle donne une trajectoire différente. On n’obtient 

pas un effectif par pas de temps mais une distribution d’effectifs par pas de temps, c’est-à-dire 

la probabilité d’avoir un effectif d’une taille donnée. L’étude du phénomène moyen n’est pas 

suffisant (Fig. 1) : il faut en plus prendre en compte la distribution des effectifs dans le temps 
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et les paramètres descriptifs de ces distributions (espérance, variance et autres moments des 

distributions). Ce type de modèle utilisé dans ce travail, et les propriétés mathématiques de ce 

type de modèle feront l’objet d’un chapitre particulier.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 : Différentes trajectoires des effectifs au cours du temps obtenus à partir d’un processus de 

ramification (Branching Process). Chaque trajectoire correspond à une simulation ( = 1 répétition ).  
 

 

Malgré la diversité des modèles qui existent et sont utilisés en biologie de la 

conservation, malgré le nombre d’études théoriques et pratiques réalisées à partir de ses divers 

modèles, très peu d’études ont considérés les individus comme étant non statistiquement 

indépendants (Burgman et al., 1993). D’un point de vue biologique, cette dépendance 

statistique signifie qu’il n’existe pas d’influences sur la survie ou la reproduction entre les 

animaux : le fait de savoir par exemple qu’un ou plusieurs individus d’une population survit 

une année donnée ne donne aucune information sur la survie des autres individus. Pourtant, 

on observe souvent dans les populations naturelles de fortes variations des paramètres 

démographiques, qui concernent souvent tous les individus d’une même population : lorsque 

les individus ont une bonne survie et reproduction par exemple, on qualifie souvent cela de 

bonne année et le cas inverse de mauvaise année. Cela montre bien qu’il existe une tendance 

générale d’une population à se comporter de la même façon, et donc qu’il n’y a probablement 

pas indépendance entre individus d’une même population. Pourquoi alors un tel phénomène 

n’est pas ou peu pris en compte dans les modèles ? Cela tient essentiellement à des problèmes 

mathématiques. Dès lors que des événements  probabilistes ne sont plus indépendants 
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statistiquement, les calculs mathématiques deviennent beaucoup plus complexes : la 

probabilité de deux événements indépendants est égale au produit des probabilités de chaque 

événement. Dès que l’on s’écarte de l’hypothèse d’indépendance, cette formule n’est plus 

valable et rentre alors en jeu la notion de corrélation qui complique sérieusement les calculs.  

Néanmoins, même si cette hypothèse d’indépendance entre individus est pratique d’un point 

de vue modélisation et compréhension des systèmes biologiques, elle doit être testée afin de 

vérifier qu’elle n’engendre pas de coût important quant à la précision et l’exactitude des 

résultats.  
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B- DEPENDANCE ENTRE INDIVIDUS ET REALISME DES MODELES 
D’EXTINCTION  

 
1- Une classe de modèle d’extinction, les Processus de 

Ramification 
 

 
Dans cette étude, nous avons choisi d’utiliser comme cadre les processus de ramification 

(ou « Branching Processes » en anglais). 

 

1-1 Principe de base des processus de ramification  

 

 Pour un processus à un seul type d’individus (Caswell, 2001), le principe est le suivant 

(Fig. 2) : chaque individu est remplacé par X individus à la génération suivante (appelés 

contribution individuelle), X étant un nombre entier aléatoire, tiré selon une loi de probabilité 

qui dépend des paramètres de survie et de reproduction. L’effectif de la population à la 

génération suivante est déterminé par la somme des contributions individuelles. 

  Si un individu meurt sans se reproduire, il est remplacé par 0 individu à la génération 

suivante. Si tous les individus meurent sans se reproduire, la population s’éteint. Pour obtenir 

directement la loi ou les moments de l’effectif de la population au temps t (Zt), on utilise 

fréquemment le concept de fonction génératrice de probabilités, un outil qui permet de 

résumer les propriétés d’une distribution de probabilités discrète.  

Ce type de modèle incorpore de manière directe les paramètres démographiques: ils ont 

donc une pertinence biologique et une bonne lisibilité. Ils intègrent de la stochasticité 

démographique, c’est-à-dire la variabilité des performances de reproduction et des processus 

de mortalité entre individus, phénomène non négligeable dans le cas de petites populations. 

Ces modèles permettent souvent une approche formelle et une approche par simulation. Le 

cadrage des simulations par des résultats théoriques les rend alors plus pertinents et plus 

interprétables. 

Nous nous restreignons à des modèles en temps discret, basés sur des effectifs 

discrets. La population ou l’espèce est éteinte lorsqu’elle atteint l’effectif nul, la notion 
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d’extinction est sans ambiguïté, contrairement à certains modèles où les effectifs sont 

continus. 
 
 
 

 
 

Figure 2 : Le remplacement des individus dans un processus de ramification en temps discret. 
 

 

1-2 Propriétés principales des  processus de ramification 

 

Un processus de ramification tel que décrit ci-dessus est un cas particulier d’une chaîne 

de Markov à temps discret et à espaces d’états discrets: l’effectif de la population au temps t 

ne dépend du passé que via l’effectif  de la population au temps t-1 (Karlin et Taylor, 1975). 

Les différents états {Zi} de la chaîne de Markov sont constitués par les différentes 

valeurs que peut prendre la population au temps t. 0 est un état absorbant : lorsque le système 

atteint l’état 0, il y reste. M est la matrice de transition des effectifs (Fig. 3), permettant de 

passer du temps t-1 au temps t, d’éléments jip , : { }iZjZp ttji === + /Pr 1,  . 
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Figure 3: Matrice de transition d’une chaîne de Markov en temps discret et à espaces d’états discrets et infinis. 

 
 

Cette matrice est infinie mais bénéficie dans les cas les plus simples des mêmes 

propriétés qu’une matrice finie (Gosselin et Lebreton, 2000). Ainsi, si le processus est sub-

critique c’est-à-dire si chaque individu est remplacé en moyenne par m = E(Xi) individus ( 

1≤m ), alors le système converge vers l’extinction. Mais la distribution des effectifs des 

populations non éteintes se stabilise (Fig. 4) : le deuxième vecteur propre à gauche, V2 = 

(b1,b2,…bi,…) = {bk}kεN* associé à la deuxième valeur propre λ2 de la matrice M représente la 

distribution stable des effectifs non-éteints quel que soit l’effectif initial de la population ou 

encore que :  ( )
∞→

=>=
t

bZiZ itt 0/Prlim    avec *Ni∈  

 On appelle alors la distribution de probabilité {bk}k∈N* Distribution Quasi-Stationnaire 

(DQS) des effectifs car il s’agit bien d’une distribution stationnaire mais  

conditionnellement à la non-extinction. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 : Probabilité annuelle d’extinction d’une population et distribution quasi-stationnaire des effectifs non-
éteints. 
 
 
 
Sous cette Distribution Quasi-Stationnaire, la  probabilité de persistance de la population sur 

un pas de temps est constante (Lebreton et al., soumis): 

            Zt 
Zt+1 

0 1 2 ……i…… 

0 1 P0,1 P0,2 P0, i 
1 0 P1,1 P1,2 P1, i 
2 0 P2,1 P2,2 P2, i 

…j.. 0 Pj,1 Pj,2 Pj, i 
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   { }( ) 2*1 /0Pr λ==> ∈+ Niitt bZZ   

 

d’où la probabilité d’extinction sur un pas de temps: 

{ } ∑
∞

=
∈+ =−===

1
02*1 1)/0Pr(

i
iiNiitt pbbZZ λ   

ou encore, en définissant Pi comme la probabilité d’extinction individuelle telle que (Pi)i=pi0: 

{ } i
ii

i
Niitt PbbZZ )()/0Pr(

1
*1 ∑

∞

=
∈+ ===  

Sur i pas de temps, la date d’extinction d’une population suit une distribution 

géométrique : { } )1()/0Pr( 2
1

2* λλ −=== −
∈+

i
Niitit bZZ . Connaissant la probabilité 

d’extinction annuelle, il est donc possible de déterminer la date d’extinction de la 

population. 

 

Pour notre objectif général d’étude des dépendances entre individus, malgré l’hypothèse 

de base d’indépendance dans les processus de ramification les plus simples, ce type de 

modèles se prête à diverses généralisations. Voici tout d’abord le cas d’une dépendance 

généralisée ente individus. 

 



21  

 
2-Dépendance générale entre individus 

 
 
 

Les processus de ramification les plus simples, et beaucoup d’autres modèles 

d’extinction se basent sur l’hypothèse de ramification selon laquelle la descendance Xi de 

chaque individu est tirée au sort indépendamment des descendances des autres individus 

(Gosselin, 1997). Dans le cas contraire, si les individus sont liés entre eux, la covariance de la 

contribution de deux individus (Xi,Xj) à la génération suivante n’est pas nulle. Une des façons 

de représenter une telle covariance est de considérer que chaque individu est remplacé à la 

génération suivante par une variable aléatoire Ui, propre à chaque individu, et une autre 

variable aléatoire V commune à l’ensemble de la population. Alors la covariance de (Xi,Xj) 

est égale à la variance de V, toujours positive : 

En effet de VUX ii +=  et VUX jj += , avec 0),cov( =ji UU , 0),cov( =VU i  et 

0),cov( =VU j  

on déduit que )var(),cov(),cov( VVUVUXX jiji =++=  

et donc 
)var()var(

)var(
)var(
)var(

ii UV
V

X
V

+
==ρ  avec ρ :coefficient de corrélation  entre Xi et Xj. 

 

 

 

 

2-1 Hypothèses 

 

Nous avons défini l’effectif de la population au temps t+1, Zt+1 comme la somme des 

contributions individuelles de la population au temps t :  

)(
1

1 VUZ
tZ

r
rt += ∑

=
+  on note ir piU == )Pr( , i=0,1,2… et ∑

∞

=

=
0

1
i

ip  ; kvkV == )Pr(  

d’où VZUZ t

Z

r
rt

t

×+= ∑
=

+
1

1                 et ∑
∞

=

=
0

1
k

kv  

Quelques propriétés peuvent être obtenues en utilisant un outil classique d’étude des 

processus de ramification, les Fonctions Génératrices de Probabilités (Annexe 1) . La 
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Fonction Génératrice de Probabilités (FGP) )(sf  de Ur est définie: ∑
∞

=

=
0

)(
i

i
i spsf , et la 

Fonction Génératrice de Probabilités g(s)  de V : ∑
∞

=

=
0

)(
k

k
k svsg . La Fonction Génératrice de 

la somme de variables aléatoires indépendantes est le produit des Fonctions Génératrices (la 

Fonction Génératrice de i×V est g(si)), d’où l’expression de celle de 

Zt+1 : ))()((∑ × ii
i sgsfp . La probabilité d’extinction de la population au temps t+1, sachant 

que Pr(Zt+1=0/Zt=pi)=pi0=f(0)ig(0) est égale à : 

 Pr(Zt+1=0/Zt={pi})=∑ ∑≥ ii
i

i
i gfpgfp )0()0()0()0( (indépendance des individus), car g(0) 

est inférieur à 1, donc g(0)>g(0)i (i étant supérieur à 1) 

 

La probabilité d’extinction lorsqu’il existe une dépendance généralisée entre 

individus est donc supérieure à celle sous l’hypothèse d’indépendance. Cette dépendance 

est représentée par le coefficient de corrélation ρ de la somme de deux contributions 

individuelles à la génération suivante. Dans quelle mesure l’intensité de la corrélation 

augmente la probabilité d’extinction ? 

 

2-2 Effectif efficace d’extinction 

 

Pour obtenir des résultats plus complets de probabilité d’extinction, notamment grâce à 

des simulations, il faut attribuer une loi de probabilité à la variable Xi. Nous avons choisi à 

titre d’exemple une loi de Poisson, de paramètre λ. En effet, le nombre d’individus 

remplaçant un individu entre t et t+1 est fréquemment modélisé par une loi de Poisson 

(Lebreton, 2000b). Il est alors possible de simuler les trajectoires de populations dans le 

temps, en tirant à chaque pas de temps et pour chaque individu une variable aléatoire issue 

d’une loi de Poisson de paramètre λ,. Nous commençons par le cas où λ est toujours inférieur 

à 1 pour se situer dans le cas sub-critique et avoir donc à terme une extinction certaine. 

Schématiquement : VU +→1         (U+V) suit une loi de Poisson de paramètre λ=a+b, et la 

corrélation entre U et V est ρ=a/a+b. 

               VZUZZ t

Z

i
itt

t

×+=→ ∑
=

+
1

1  
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Le coefficient de corrélation ρ entre U et V représente l’intensité de la dépendance entre 

les individus : si ρ vaut 1, tous les individus se comportent de la même façon, il n’existe pas 

de variabilité individuelle. Si ρ est nul, les individus sont indépendants les uns des autres et 

nous nous trouvons donc ramené au cas usuel. 

 

Dans le cas extrême d’une corrélation de 1 (ρ =1, donc λ=b), toute la population se 

comporte comme un seul individu. La probabilité de n’avoir aucun individu à la génération 

suivante vaut e-b (pour une loi de poisson de paramètre b, P(X=0)=e-b). 

        Pr(Zt+1=0/Zt=k)= be−  avec λ=a+b et ρ=b/(a+b)=1 donc a=0 

 La probabilité d’extinction annuelle est alors indépendante de l’effectif de la 

population, elle ne dépend que de son taux moyen de renouvellement. Or même avec un taux 

de renouvellement moyen de 0,99, donc très proche de 1,  la probabilité d’extinction annuelle 

de la population est supérieure à 10%, quelque soit l’effectif de la population. Dans notre 

exemple, e(-0,99)=0,3716, il y a en moyenne 37,16% des populations qui s’éteignent par pas de 

temps. Cette valeur élevée résulte bien sûr de la dépendance totale entre individus.  

 

Dans le deuxième cas extrême d’une corrélation nulle (ρ=0, donc λ=a), c’est-à-dire 

d’indépendance entre individus,  chaque individu est remplacé en moyenne par « a » 

individus toujours selon une loi de poisson de paramètre λ. La probabilité qu’un individu ne 

soit pas remplacé, c’est-à-dire la probabilité d’extinction individuelle vaut e(-a). Comme tous 

les individus sont indépendants, la probabilité que tous les individus d’une population de taille 

k ne donnent aucun descendant vaut alors le produit des probabilités individuelles.  Dans 

notre cas, cette probabilité vaut e(-0,99)k. La probabilité d’extinction annuelle est  alors 

dépendante de l’effectif de la population au temps précédent : plus l’effectif de la 

population augmente, plus sa probabilité d’extinction diminue (Fig. 5). On retrouve les 

conclusions classiques selon lesquelles les populations de petits effectifs sont les plus 

vulnérables. 

           Pr(Zt+1=0/Zt=k)= ( )kae−  avec λ=a+b et ρ=b/(a+b)=0 donc b=0 
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Figure 5 : Probabilité annuelle d’extinction P(0) d’une population à distribution de remplacement Poisson (0,99) 

en fonction de l’effectif de la population µ selon la relation P(0)=e(-0.99) µ. 
 

Entre ces deux cas extrêmes, que se passe-t-il ? Pour une population d’effectif i au 

temps t, la probabilité d’extinction à la génération suivante est : 

           Pr(Zt+1=0/Zt=i)= ( ) bia ee −−  

et pour l’ensemble des trajectoires de la distribution {bi} : 

           Pr(Zt+1=0/Zt={bi})= bai
i eeb −−∑  

Si l’on approche la distribution {bi} par son espérance notée µ en négligeant sa dispersion, on 

obtient alors : 

                    Pr(Zt+1=0/Zt={bi}) µab ee )( −−≈  

Si l’on compare l’effectif µ à un effectif efficace µ’, effectif d’une population dont les 

individus seraient indépendants et qui donnerait la même valeur de la probabilité 

d’extinction c’est-à-dire : 

           Pr(Zt+1=0/Zt={bi})= ')( µbae +−  

On obtient alors une relation entre µ et µ’ : 

1)−(−= µρµµ '   (équation 1) 

En traçant la fonction µ’=f(µ) (Fig. 6), on constate bien que pour les fortes valeurs de 

corrélation, une forte augmentation de l’espérance provoque un faible accroissement de 

l’effectif efficace. 

Si l’on note P la probabilité d’extinction individuelle : 

Pr(Zt+1=0/Zt={bi}) )1(' −−≈≈ µµµ PP ρ   (équation 2) 
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On retrouve bien dans le cas où ρ vaut 1, un effectif efficace de 1 : toute la population se 

comporte comme un seul individu, et dans le cas où ρ vaut 0, un effectif efficace égal à 

l’effectif réel. Entre les deux, plus ρ tend vers 1, moins l’effectif réel de la population a 

une influence sur l’effectif efficace, et plus l’extinction de la population dépend de la 

probabilité d’extinction individuelle. 

   
         ρ=0 

                      ρ=0,1 

         ρ=0,2 

         ρ=0,3 

         ρ=0,4 

         ρ=0,5 

         ρ=0,6 

         ρ=0,7 

         ρ=0,8 

         ρ=0,9 

         ρ=1  

           
 
Figure 6 : Effectif efficace d’extinction µ’ d’une population en fonction de l’effectif quasi-stationnaire µ et du 
coefficient de corrélation entre individus ρ, selon la relation µ’=µ- ρ(µ-1). On voit par exemple qu’une 
population d’effectif µ=50 avec une corrélation entre individus ρ = 0 ,6 a le même risque d’extinction qu’une 
population d’effectif µ =20 dans laquelle les individus sont indépendants. 
 

 

2-3 Vérification de la qualité de l’approximation par simulation 

 

Dans la partie précédente, les calculs ont abouti à une formule d’effectif efficace 

d’extinction en fonction du degré de corrélation entre individus et de l’effectif moyen de la 

distribution quasi-stationnaire.  Pour vérifier la qualité de cette approximation, j’ai évalué par 

simulation les différents paramètres de cette expression. Dans ce but, j’ai simulé les 

trajectoires en nombre suffisant pour qu’au bout de 100 pas de temps, il subsiste encore 500 

populations non éteintes. Sur les derniers pas de temps (en pratique lorsque l’on a atteint la 

distribution quasi-stationnaire), on estime la probabilité d’extinction annuelle, la moyenne des 

effectifs des populations non-éteintes et la distribution des effectifs des populations {bi}iεN*. 
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Ces simulations sont répétées pour des valeurs de ρ allant de 0 à 0,5 obtenues en faisant varier 

a et b mais avec λ=a+b constant. 

Ainsi, on obtient les valeurs des probabilités d’extinction annuelle pour différentes 

valeurs de corrélation entre individus. Pour des raisons pratiques, ρ ne varie pas jusqu’à 1 ; à 

partir de 0,5 la plupart des trajectoires s’éteignent. Pour obtenir 500 trajectoires non-éteintes 

au bout de 100 pas de temps, cela demande un nombre de répétitions beaucoup trop 

important.  

 L’estimateur 
t

p̂  de la probabilité d’extinction de la population Pr(Zt=0/Zt-1={bi}) 

représente le nombre de trajectoires éteintes au pas temps t par rapport au nombre de 

trajectoires non-éteintes au pas de temps t-1 : 

)(1ˆ
1−

−=
t

t
t N

N
p  avec Nt : nombre de trajectoires non-éteintes au temps t  

Cette probabilité augmente avec l’intensité de la corrélation. (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Augmentation de la probabilité annuelle d’extinction d’une population simulée selon un processus de 

ramification en temps discret (voir explication dans le texte) en fonction du coefficient de corrélation entre 

individus. 
 

En ce qui concerne les paramètres de la distribution quasi-stationnaire, son espérance µ̂  

(c’est-à-dire l’effectif moyen des populations non-éteintes ) augmente avec ρ (Fig. 8) alors 

que la médiane diminue. Ce qui est confirmé par le moment d’ordre 3, coefficient 

d’asymétrie, qui croît avec l’augmentation de la corrélation, tout comme l’écart type de la 

distribution.
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a : espérance b : médiane 
 
 
 
a : espérance b : médiane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 c : asymétrie  d : écart-type 
 
 
c : asymétrie  d : écart-type 

 
 
Figure 8 : Caractéristiques de la distribution quasi-stationnaire de populations simulées en fonction du 
coefficient  de corrélation entre individus. Courbes ajustées visuellement. 
 

 

Si l’on reprend l’expression (2), et que l’on évalue la probabilité d’extinction en 

fonction de l’espérance de la distribution µ, et du coefficient de corrélation ρ, les valeurs de 

probabilité  calculées et celles estimées par simulation sont totalement différentes (Tableau 1).  
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Tableau 1: Probabilité d’extinction obtenue par simulation P(0) et calculée selon l’équation (2) : P(0)= P(µ-

ρ(µ-1)) avec P probabilité d’extinction individuelle égale à e-0.99 avec µ égale à l’espérance de la distribution et 

µ égale à la médiane de la distribution 

 

En  reprenant la même démarche, mais avec la médiane cette fois, les valeurs calculées 

de probabilité d’extinction restent plus élevées que les valeurs obtenues par simulation, mais 

elles suivent la même tendance: elles augmentent avec le coefficient de corrélation ρ. Plus la 

corrélation entre individus est forte, plus il existe de populations à forts effectifs, ce qui 

augmente l’espérance de la distribution, alors que la majorité des trajectoires se situent vers 

les petits effectifs et font diminuer la médiane. La distribution est de plus en plus asymétrique 

(Fig. 9). Dans l’expression (1), il faudrait donc  plutôt utiliser la médiane de la distribution 

que son espérance. Ce serait un point à reprendre dans le développement d’approximation de 

l’effectif efficace d’extinction pour des distributions  dissymétriques.  
 
     
. 
  
 
 
 
 
 
 
 

 

 

 

 

 
Figure 9 : Asymétrie de la distribution quasi-stationnaire des effectifs non-éteints en cas de corrélations entre 
individus. 

 

 

 

 

ρ 0 0,1 0,2 0,3 0,4 0,5 
P(0)  1.32e-002 2.48e-002 3.94e-002 4.65e-002 6.06e-002 7.85e-002 
moyenne m 36,44 57,73 64,17 65,67 64,27 73,19 
e(-0.99)*(m-ρ(m-1)) 2,13e-016      4,12e-023 6,89e-023     1,27e-020 1,77e-017     1,12e-016     
médiane m’ 26 22 18 12 11,5 10 
e(-0.99)*(m’-
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Lorsque la dépendance entre individus est forte, la distribution des effectifs non-

éteints est très asymétrique. L’espérance de la distribution représente mal l’état d’une 

population ; ce n’est pas parce qu’elle est élevée que la population s’éloigne de 

l’extinction.  

Mais même si le paramètre µ de l’équation (1) et (2) n’est pas simple à déterminer, et 

demande des études plus poussées sur le sujet, cette formule de probabilité n’en reste pas 

moins très pertinente : elle permet de représenter l’effet de la corrélation entre individus 

comme une perte d’effectifs par rapport à une population d’individus indépendants, et 

montre qu’une variation de l’intensité de la corrélation modifie beaucoup cette perte 

d’effectifs. 

 

La critique principale de ce résultat ne se porte pas tant sur l’estimation du paramètre µ, 

que sur le modèle utilisé. En effet, dans ce modèle, chaque individu est remplacé en moyenne 

par m individus (m étant l’espérance de Xi ), avec m constant dans le temps et indépendant de 

la densité de la population. Un modèle réaliste du point de vue biologique devrait incorporer 

de la densité-dépendance c’est-à-dire une régulation des paramètres démographiques selon la 

densité de la population.  
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3- Densité Dépendance 
 

Jusqu’à présent nous avons considéré que les populations pouvaient croître sans limite, 

et dans nos simulations, certaines trajectoires atteignent de grands effectifs par rapport à 

l’effectif initial. Dans les premières parties, nous avons posé l’hypothèse de populations à 

croissance densité-indépendante. Or, même si les premiers modèles de démographie 

(proposés par Malthus dans son « Essay on Population » en 1798. ) postulaient une croissance 

exponentielle, sans limite, ceux-ci n’ont pas de réalité biologique : une croissance 

exponentielle à long terme est impossible et il existe inévitablement une régulation des 

effectifs des populations (Boyce, 1992). La raison d’un tel comportement est variée : une 

grande population épuise les ressources rapidement, les individus deviennent des proies plus 

accessibles… Les performances démographiques se détériorent alors avec l’accroissement des 

effectifs : on parle de régulations « densité-dépendantes ».  L’existence d’un rétrocontrôle 

négatif sur les performances démographiques réduit les fluctuations des effectifs  et peut 

diminuer de façon importante les risques d’extinction (Ginzburg et al., 1990). Or l’estimation 

des paramètres de densité-dépendance  (capacité limite et taux de croissance intrinsèque de la 

population dans le cas d’un modèle logistique) étant mal-aisée, l’usage de modèles densité-

indépendants reste le plus courant. Ceux-ci sont censés surestimer les probabilités 

d’extinction par rapport aux modèles densité-dépendants,  leur usage resterait donc justifié. 

L’existence d’une corrélation entre individus peut changer le comportement des modèles 

densité-dépendants vis-à vis de l’extinction, ces deux facteurs n’agissant pas dans le même 

sens : l’un à tendance à réduire les fluctuations d’effectifs et à diminuer les risques 

d’extinction, l’autre agit exactement dans le sens opposé.  

 

3-1 Processus de Ramification  Densité Dépendants 

 

Pour réaliser des analyses de viabilité des populations avec corrélation entre individus et 

densité dépendance, on utilise un processus de ramification qui intègre de la densité 

dépendance. Ce type de processus de ramification est caractérisé par une contribution 

individuelle à la génération suivante Xi,t variable dans le temps : elle diminue avec 

l’augmentation des effectifs. L’extinction est certaine si pour toutes les populations  
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d’effectifs i supérieurs à un effectif seuil io, l’espérance de Xi,t est inférieure à 1 (Gosselin, 

1997). Autrement dit, lorsque la population a atteint un effectif assez important, chaque 

individu est remplacé en moyenne par moins de 1 individu, ce qui est correspond à 

l’hypothèse de régulation démographique. Dans de telles conditions, Gosselin (1997) 

démontre qu’il existe une distribution quasi-stationnaire et une probabilité d’extinction par 

pas de temps. Pour représenter la corrélation entre contributions individuelles, on reprend la 

même approche que dans le cas du modèle densité-indépendant : un individu est remplacé à la 

génération suivante par Xi individus,  somme de deux variables aléatoires indépendantes Ui et 

V, et tel que la covariance de la contribution de deux individus à la génération suivante est 

égale à la variance de V. 

  

Pour simuler la densité-dépendance, nous avons utilisé un modèle logistique, dans 

lequel la croissance de la population est nulle pour un effectif K (appelé capacité limite), 

tandis que pour des effectifs supérieurs à K, la croissance de la population est inférieure à 1. 

Le taux de croissance maximum de la population  r représente le temps mis par la population 

pour atteindre l’effectif d’équilibre K dans un modèle déterministe (Case, 1999). Dans notre 

simulation, la variable aléatoire Xi suit encore une loi de Poisson de paramètre λ qui varie 

selon l’effectif de la population Z au temps t. Le paramètre λ  est égale à 
⎟
⎠
⎞

⎜
⎝
⎛ −

K
Zr

e
1

 avec r le  

taux de croissance maximum de la population et  K la capacité limite, ce qui 

entraîne :
)1(

1 )/( k
zr

tt ezZZE
−

+ == . Il s’agit donc d’un équivalent stochastique du modèle de 

Ricker (1975) en temps discret. 

 

3-2 Effectif efficace d’extinction et densité dépendance 

 

Différentes valeurs de paramètres de densité dépendance sont attribuées au modèle ; la 

capacité limite K varie de 30 à 100 et le taux de croissance intrinsèque de la population r varie 

de 0,1 à 0,3. Nous ne nous sommes pas attachés aux valeurs de r plus élevées conduisant dans 

les modèles déterministes à des comportements chaotiques. Sans corrélation, la probabilité 

d’extinction de la population diminue avec des fortes valeurs de K et r, ce qui va dans le sens 

d’un effet modérateur de la densité dépendance sur le risque d’extinction de la population. 

Dans un premier temps, le taux d’accroissement est fixé à 0,1 et la capacité limite K varie de 

30 à 100. La probabilité d’extinction de la population au bout de 100 pas de temps s’accroît 
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avec l’augmentation du coefficient de corrélation ρ (Fig. 10) pour toutes les valeurs de K. 

Dans un deuxième temps, la capacité limite K est fixée à 50, et le taux d’accroissement r varie 

de 0,1 à 0,3. La tendance est similaire, à savoir l’accroissement de la probabilité d’extinction 

avec l’intensité de la corrélation (Fig. 11), quelle que soit la valeur de r.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 : Probabilité d’extinction obtenue par simulation d’un processus de ramification densité dépendant, en 
fonction du coefficient de corrélation entre individus, pour un effectif à l’équilibre K fixé à 50 (et pour un taux 
de croissance maximum r = 0,01 (°) ; 0.1 (*); 0,2 (^)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 :  Probabilité d’extinction obtenue par simulation d’un processus de ramification densité dépendant, 
en fonction du coefficient de corrélation entre individus, pour un taux de croissance maximum r fixé à 0.1  (et 
pour un effectif à l’équilibre K=30 (*) ;60 (°) ;100 (^)). 
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La variation de la probabilité d’extinction (notée P(0)) à chaque pas de temps avec la 

corrélation entre individus est donc très forte. Si l’on relie le logarithme de la probabilité 

d’extinction estimée par simulation aux paramètres du modèle par régression multiple, on 

obtient les relations suivantes : 
ρ320,600594.0187,5)0( +−−= KeP  équation (3) avec r2=0 ,932 

ρ091,7858,8847,4)0( +−−= reP     équation (4) avec r2=0 ,964 

Les équations permettent de calculer un véritable coefficient de sensibilité. On peut 

aussi comparer grossièrement les pentes des 3 paramètres étudiés, en les rapportant à 

l’ampleur des variations des paramètres : 

=∆ Plog 1,26 pour une variation de 0,2 unités de corrélation alors que =∆ Plog -0,416 

pour une augmentation de K de 70  

=∆ Plog  3,6  pour une variation de 0,2 unités de corrélation alors que =∆ Plog -1,77 

pour une augmentation de r de 0,2 unités.  

Une faible variation de l’intensité de la corrélation entre individus entraîne une forte 

variation de la probabilité d’extinction de la population, tandis qu’une forte variation de K ou 

de r entraîne une faible variation de la probabilité d’extinction de la population. Le facteur 

principal qui agit sur la variation de la probabilité d’extinction dans un modèle densité 

dépendant est le facteur de dépendance entre individus, bien avant les paramètres 

d’intensité de la  densité dépendance. 
Mais on peut également analyser ces simulations en référence à la formule 

d’approximation de la probabilité d’extinction par pas de temps développée précédemment : 

P(0)=Pµ-ρ(µ-1) avec P : probabilité d’extinction individuelle 

De fait, au voisinage de l’équilibre, la distribution de remplacement étant une loi de 

Poisson, P est voisin de Pr(X=0) pour une loi de Poisson de paramète 1, soit e-1. 

On obtient alors P(0)=e-µ+ρ(µ-1) ou encore log P(0)=-µ+ρ(µ-1). 

L’analyse par régression multiple de log P(0) en fonction de K et ρ conduit à log P(0)=  

-5,187-0,00594K+6,320ρ≈ -5,187+6,320ρ. Cette équation est très proche de notre 

approximation théorique puisque à la similitude -µ et (µ-1) correspond celle entre ordonnée à 

l’origine (-5,187 ) et pente de ρ (6,320). Elle suggère un très faible effectif efficace 

d’extinction, voisin de 6, même pour des valeurs de K élevées et de faibles valeurs de ρ. Dans 

ce type de populations, les excursions vers les faibles valeurs sont donc suffisamment 

fréquentes pour abaisser l’effectif efficace d’extinction considéré en dessous de l’effectif à 

l’équilibre.  
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En employant -même si c’est dans le contexte une approximation encore plus grossière 

car les Distributions Quasi-Stationnaires sont fortement dissymétriques -l’approche de 

l’effectif efficace d’extinction pour une Distribution Quasi-Stationnaire normale de Niel 

(2000), on obtient  des valeurs d’effectifs efficaces d’extinction à partir de K et de l’écart-type 

de la distribution. Ces effectifs efficaces calculés sont négatifs et très élevés en valeur 

absolue, du fait de la forte asymétrie de la distribution des effectifs à l’équilibre pour lesquels 

l’approximation par une distribution normale est inefficace. Des analyses supplémentaires et 

plus précises sont à poursuivre dans ce sens, afin d’avoir une formule d’effectif efficace 

prenant en compte la forme de la distribution et la corrélation entre individus. Mais cette 

approche d’effectifs efficaces d’extinction est à développer : elle permet en effet de 

comparer différents facteurs influençant l’extinction en ayant une idée immédiate et 

lisible de leurs effets respectifs, et de prendre alors les mesures de conservation 

nécessaire pour maintenir les populations à des risques d’extinction acceptables.  

 

Ces premières analyses montrent donc un rôle extrêmement fort de la corrélation entre 

individus et suggèrent également que les approches assez générales et simples de l’effectif 

efficace d’extinction sont à portée de main. Cette importance de la corrélation entre individus 

amène donc à tenter de l’interpréter plus finement : la nature de la variabilité qu’elle engendre 

est ainsi discutée dans le prochain paragraphe. Conformément à nos objectifs d’ensemble, il 

reste également à juger du rôle de cette corrélation face à d’autres types de dépendance entre 

individus. C’est l’objet du chapitre 6. 

 

Que ce soit dans un modèle incorporant ou  non un effet de densité-dépendance, on note 

l’aspect de plus en plus erratique des trajectoires des populations avec l’augmentation de la 

corrélation, du à de grandes fluctuations des tailles d’effectifs d’un pas de temps à l’autre 

(Fig. 12). Ce type de fluctuations ressemble à de la stochasticité environnementale (définie 

comme la variabilité des conditions environnementales, qui affecte tous les individus de la 

même façon) : la valeur prise par la variable aléatoire de corrélation V fluctue dans le temps, 

elle peut être élevée à un moment donné, et alors tous les individus de la population génèrent 

beaucoup d’individus, puis faible au pas de temps suivant, et réduire brusquement l’effectif de 

la population. Or l’environnement dans lequel vivent les animaux est fluctuant dans le temps, 

il est parfois favorable, par exemple en cas d’abondance de ressources alimentaires, puis 

devient brusquement hostile comme dans le cas de fortes sécheresses. Cette variation de 

l’environnement se répercute sur les populations : lorsque les conditions sont favorables la 
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survie et la reproduction sont globalement meilleures pour toute la population, et l’inverse 

lorsque les conditions sont mauvaises.   

 
 
 

 
 
 
   
            effectifs 
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         des 
         populations 
 
 
 
 
 
 
 
 
             pas de temps       
          

 
 
    coefficient de corrélation 

 
 
 
Figure 12 :Effectifs moyens de populations obtenus par simulation d’un processus de ramification densité 
indépendant, en fonction du temps et du coefficient de corrélation entre individus. 
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4-Dépendance généralisée entre individus et variabilité de 
l’environnement 

 

Eengen et Saether (1998) ont montré que la stochasticité environnementale utilisée 

classiquement dans les modèles démographiques se décompose, dans l’étude de processus de 

vie et de mort, en somme de la variance environnementale et de la covariance des 

contributions de deux individus.  

La stochasticité environnementale est prise en compte dans certains modèles de 

processus de ramifications : on appelle de tels modèles les Processus de Ramifications  en 

Environnement Aléatoire (« Branching Process with Random Environments », BPRE en 

anglais) (voir par exemple Arthreya et al., 1972, page 249). Dans ce cas, la contribution Xi de 

chaque individu i à la génération suivante suit une loi de probabilité qui varie dans le temps et 

représente les fluctuations de l’environnement et son impact sur les paramètres 

démographiques de la population. En cas d’environnement défavorable une année, comme par 

exemple une faible pluviométrie, les ressources alimentaires diminuent, ce qui se répercute 

sur  toute la population et le nombre d’individus qui se reproduisent et/ou qui survivent 

diminue : la contribution de chaque individu à la génération suivante est plus faible. En cas 

d’année favorable au contraire, celle-ci augmente. La  fonction génératrice de l’effectif de la 

population Zi au temps i, au lieu d’être identique dans le temps (une seule fonction génératrice 

de Zi : f(s) ), est différente à chaque pas de temps : fi(s) est une fonction génératrice aléatoire. 

La fonction génératrice d’une population Z  au temps t+1 est l’espérance de fonction 

génératrice d’une population Z  au temps t : ft+1(s)=E{ ft-1(ft(s))}. 

Dans le cas de dépendance entre individus, si la fonction génératrice de Zt est ∑
∞

=

=
0

)(
i

i
i spsf , 

celle de Zt+1 est ))()((∑ × ii
i sgsfp soit { }∑ ∑

k

kii
ik ssfpv )(  ∑= ))(( Vii

iV
ssfpE . On 

retrouve bien une fonction génératrice de probabilité d’un Processus de Ramifications  en 

Environnement Aléatoire de fonction génératrice aléatoire f(s)sv.  

La dépendance entre individus génère donc un processus aléatoire de même nature 

que de la variation de l’environnement. Eengen et Saether (1998) décomposent la 

stochasticité environnementale en somme de la variance de l’environnement et corrélation 

entre individus. Ce découplage n’est pas indispensable ; la corrélation entre individus entraîne 



37  

une réaction des populations face à des modifications d’environnement, les deux phénomènes 

sont confondus.  

La variation dans le temps de l’effectif d’une population est due à la fois à la 

stochasticité démographique et à la stochasticité environnementale. La difficulté consiste à 

séparer la part de chacun de ces facteurs dans la variation des effectifs de la population. Or  la  

variation intra-individuelle inter-année ( soit le fait qu’un individu ne se comporte pas de la 

même manière à chaque pas de temps) est engendrée à la fois par de la stochasticité 

environnementale et par de la stochasticité démographique ). Par contre, la stochasticité 

démographique augmente la variation inter-individuelle intra-année (le fait que tous les 

individus ne se comportent pas de la même manière sur un pas de temps, du au tirage aléatoire 

des paramètres démographiques) tandis que la stochasticité environnementale diminue cette 

même variation entre individus. La corrélation intra-année entre individus résume alors la 

force de  la stochasticité environnementale vis-à-vis de la stochasticité démographique. Il 

existe une analogie exacte entre le coefficient de corrélation entre individus ρ et  le coefficient 

de corrélation intra-classe dans le cas d’une analyse de variance avec modèle à effet 

aléatoire (ex Scheffé, 1959, page 223). A partir de données démographiques, il est alors 

possible d’estimer la variance environnementale. 
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5-Effet Allee 
 

 

Le plus souvent, lorsque l’on s’intéresse à la préservation d’une espèce ou d’une 

population, elle a déjà atteint de faibles effectifs. La diminution des effectifs se répercute 

fortement sur les espèces sociales, qui s’alimentent ou se protégent en groupe (Birkhead, 

1977)). C’est particulièrement le cas chez de nombreux grands carnivores comme les lions ou 

les lycaons, dont le succès reproducteur, la survie juvénile et l’alimentation sont améliorées 

de manière significative par la taille du groupe social (McCloud,1997). Ce type de 

comportements a été analysé par Warder Clyde Allee en 1931, qui en a déduit des effets sur le 

taux d’accroissement de la population : contrairement au phénomène de densité dépendance, 

il existe une relation positive entre le taux de croissance de la population et sa densité, jusqu’à 

un effectif seuil K’, puis à nouveau on retrouve un effet densité dépendance classique. 

(Courchamp et al., 1999, Stephens et Sutherlands, 1999). En d’autres termes, plus l’effectif 

est faible, plus le remplacement moyen par individu m diminue (Fig. 13). Les conséquences 

d’un effet Allee en analyse de viabilité des populations sont extrêmement importantes, ce 

mécanisme crée un seuil critique ou un effectif critique de population au-delà duquel 

l’extinction est beaucoup plus probable voire inévitable. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13 : Remplacement moyen par individu en présence de densité dépendance sans effet Allee ( ___ )  ou 

avec un effet Allee (---). 
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Or nous avons vu jusqu’à présent que l’existence de dépendance entre individus 

augmentait fortement la probabilité d’extinction de la population. Si l’on tien compte en plus 

d’un effet Allee, est-ce que le risque d’extinction est encore plus important, ou bien comme 

dans le cas de l’effet densité-dépendance, l’effet Allee est négligeable devant l’effet de la 

dépendance entre individus sur les risques d’extinction ?  

 

5-1 Processus de Ramification  avec effet Allee 

 

Dans le cas d’un effet Allee, comme dans le cas d’un effet densité dépendance, la 

contribution individuelle à la génération suivante Xi,t varie dans le temps suivant les effectifs 

de populations : elle est faible pour de petits effectifs, augmente jusqu’à ce que l’effectif 

atteigne un certain nombre puis diminue à nouveau comme dans le cas en densité dépendance. 

De la même façon que pour un processus de ramification densité dépendance, l’extinction est 

certaine si pour toutes les populations  d’effectifs i supérieurs à un effectif seuil io, l’espérance 

de Xi,t est inférieure à 1. Il existe donc aussi dans ce cas une distribution quasi-stationnaire et 

un taux de croissance asymptotique (Gosselin, 1997).  

Pour simuler cet effet Allee, nous avons utilisé le schéma suivant : la variable aléatoire 

Xi suit encore une loi de Poisson de paramètre λ qui varie selon l’effectif de la population Z 

au temps t. Le paramètre λ  est égal à 
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5-2 Analyse de sensibilité 

 

 Différentes valeurs du paramètre α  ont été attribuées au modèle  avec effet Allee; il 

varie de –3,5 à –0,5. Le paramètre K est fixé à 50 et r à 0,1.  Le coefficient de corrélation 

varie lui de 0 à 0,2 seulement, pour des valeurs supérieures, le modèle requiert un nombre de 

répétitions trop importantes pour atteindre les 500 trajectoires non-éteintes au bout de 100 pas 

de temps.  
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Que ce soit le coefficient de corrélation entre individus ou l’intensité de l’effet Allee, les 

deux effets vont dans le même sens : ils augmentent fortement la probabilité d’extinction de la 

population (Fig. 14). En reliant le logarithme de la probabilité d’extinction estimée par 

simulation aux paramètres du modèle par régression multiple, on obtient la relation suivantes : 
ρα 71,7248.010,4)0( +−−= eP  équation (4) avec r2=0 ,4484 

Le coefficient de corrélation r2 de la régression multiple est faible, le modèle de 

régression multiple s’ajuste mal aux données, il doit probablement manquer un facteur 

explicatif. Malgré tout, il montre bien que les deux effets vont dans le même sens (alpha étant 

négatif, cela explique le signe du coefficient ) et  si on étudie l’impact relatif de α et ρ sur la 

variation de la probabilité d’extinction à partir de ce modèle, on obtient : 

=∆ Plog 0,372 pour une augmentation d’alpha de 1,5 

=∆ Plog 0,771 pour une augmentation de ρ de 0,1 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14 : Probabilité d’extinction obtenue par simulation d’un processus de ramification en fonction de la 

corrélation entre individus, avec r = 0.1, K = 50 pour différentes intensité d’effet Allee (α=-3,5 (×) ; -
2 (*) ; -0,5 (^) ; 0 (o)). 
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La variation de la probabilité d’extinction est presque aussi importante dans les 

cas de variation de l’intensité de l’effet Allee et de la corrélation entre individus. L’effet 

Allee est essentiellement du aux interactions sociales qui existent entre les individus d’une 

même espèce. Il semble donc y avoir un impact très fort des interactions sociales entre 

individus sur les risques d’extinction des populations. Un effet Allee associé à de la  

stochasticité environnementale diminue de manière encore plus drastique l’effectif efficace 

d’extinction de la population, celui-ci devra donc être pris en compte dans le développement 

futur de formules d’effectif efficace d’extinction. 

 Dans le cas d’un effet Allee, l’impact des interactions sociales sur les risques 

d’extinction de la population s’exprime lors de réductions des effectifs, mais est-ce 

uniquement le cas ?  L’existence de relations de dépendances entre certains individus de la 

population, c’est-à-dire une dépendance non généralisée, peuvent-elles avoir des 

conséquences sur les risques d’extinction quel que soit l’effectif de la population ?  
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6- Interactions sociales 
 
 

Comme nous l’avons vu dans la première partie, une corrélation uniformément positive 

entre performances des individus est équivalente à une stochasticité environnementale. Dans 

bien des cas, seuls quelques individus d’une population sont liés, par exemple entre une mère 

et son jeune dans les premiers temps de sa vie. Ainsi, chez les éléphants, si la mère meurt 

dans les 24 premiers mois de la vie de sa progéniture, cette dernière ne peut survivre (Owen-

Smith,  1988). 

C’est un cas de figure que l’on retrouve chez beaucoup d’animaux, à partir du moment 

où le jeune qui vient de naître a besoin de soin parental pour survivre (Gubernick et Teferi, 

2000). Ce phénomène est  particulièrement important chez les mammifères, où le jeune allaite 

et est donc totalement dépendant de la survie de sa mère, de sa condition physique, de sa 

disponibilité. Or dans les modèles classiques de dynamique des populations, la survie des 

jeunes est indépendante de celle de leurs parents. 

Cette hypothèse d’indépendance a-t-elle un effet sur le modèle démographique de la 

population et plus particulièrement sur sa probabilité d’extinction ?  

 

Supposons une population à plusieurs classes d’âges, où les animaux se reproduisent à 

partir d’un âge α. La survie s1 des juvéniles et différente de celle des adultes s2. Le taux de 

fécondation f est nul pour les individus d’âge inférieur ou égal à α et constant pour  ceux 

d’âge supérieur. 

La population à l’équilibre a une distribution stable de ses classes d’âges, et cette 

distribution est égale au vecteur propre à gauche de la matrice de Leslie (Caswell, 2001), 

vecteur noté V. La probabilité d’extinction au temps t d’une population de k individus au 

temps t-1, dépend de la probabilité individuelle d’extinction Pi d’un individu d’âge i 
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On peut considérer, en notant P la probabilité d’extinction individuelle telle qu’elle est 

égale au produit des probabilités d’extinction par classe d’âge élevées à la puissance Vi , 

qu’une population structurée en classes d’âge est équivalente à une population à une seule 

classe d’âge, de probabilité d’extinction individuelle P. Cette approche proposée par  Niel 

(2000) permet de traiter de façon simple la probabilité d’extinction d’une population 
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structurée en classes d’âge comme si elle était formée d’une seule classe d’individus. Dans le 

cas simple d’individus indépendants et d’un taux de survie identique s pour toute la 

population, Niel a montré que cette probabilité individuelle P est égale à (1-s)e-(1-s). Ce 

résultat peut s’étendre au cas d’une population dont la survie juvénile est différente de la 

survie adulte. Nous verrons par la suite qu’elle permet de prendre en compte une éventuelle  

dépendance entre parents-enfants. 

En notant s1 la survie juvénile et s2 la survie adulte, et α l’âge auquel les animaux 

deviennent reproducteurs, on calcule la probabilité qu’un individu ne contribue pas à la 

génération suivante. Un individu ne donne aucun individu à la génération suivante (Pi) s’il 

meurt (1-s) et ne se reproduit pas (e-f) s’il est en âge de se reproduire. 

si i<α   Pi=(1-s1)   et si i>α  Pi=(1-s2)e-f  

Dans une population à l’équilibre quasi-stationnaire,  on montre (Annexe 2) que la 

probabilité d’extinction individuelle  ceindépendanP  vaut ( ) ( )2

1
1

1 11 1

2

1

2

ses s
s

s
s

−××−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

.   

Dans le cas d’une dépendance parents-enfants forte, lorsqu’un parent meurt (terme « 1-s2 »), 

le jeune ne survit pas. Le terme de reproduction e-f  n’est pas à prendre en compte, et Pi vaut 

(1-s) quel que soit i. 

Dans le cas de dépendance parents-enfants, la probabilité d’extinction individuelle dépendanceP  

vaut ( ) )1(1 2
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, s étant compris entre 0 et 1 puisqu’il s’agit d’un taux 

de survie, ce rapport est toujours inférieur à 1. Soit R tel que R est égal à 
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ceindépendan
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−1 ,  ce 

rapport R quantifie l’effet d’une dépendance parents-enfants sur le risque d’extinction de la 

population : lorsque R tend vers 0, l’existence d’une dépendance parents-enfants ne modifie 

pas le risque d’extinction de la population . A l’inverse lorsque R tend vers 1, cela correspond 

à un fort effet d’une dépendance parents-enfants sur le risque d’extinction de la population .. 

Si l’on trace la courbe de R en fonction de s1 et s2 (Fig. 15), on note que ce rapport diminue 

avec l’augmentation de la survie adulte et juvénile et qu’il y a un effet important des faibles 

taux de survie juvénile sur l’augmentation de la  probabilité d’extinction. 

 

Les interactions sociales entre individus peuvent créer un  certain type de dépendance, 

non pas généralisé à l’ensemble de la population mais restreint à certains individus. Ce type 
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d’interactions, lorsqu’il est observé biologiquement, doit être pris en considération dans la 

construction des modèles démographiques, car il tend lui aussi à augmenter  la probabilité 

d’extinction de la population ou de l’espèce considérée, de façon plus ou moins forte selon la 

longévité de cette espèce. Dans le cas d’espèces longévives ou fortement itéropares, ce type 

de dépendance devrait à priori avoir un impact assez faible sur les probabilités d’extinction de 

telles populations. C’est ce que l’on va vérifier sur un exemple, celui de l’Albatros 

d’Amsterdam (Diomedea amsterdamensis). Il est intéressant effectivement de voir quelle est 

l’influence d’une dépendance parents-jeunes dans l’exemple précis d’une espèce, et de la 

comparer aux autres types de dépendances étudiées jusque là.  

 
Figure 15 : Effet de la dépendance parents-jeunes sur le risque d’extinction d’une population, dans un modèle 
structuré en classes d’âges, en fonction de la survie adulte et de la survie juvénile. R correspond au rapport 

dépendanceextinctionP
ceindépendanextinctionP

)(

)(
1− . Lorsque R tend vers 0, l’effet d’une dépendance parents-jeunes sur le risque 

d’extintion de la population est faible. A l’opposé, lorsque R tend vers 1, cet effet est très fort.  
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7-Application à l’Albatros d’Amsterdam 
 

Les interactions entre individus semblent donc en théorie avoir un effet marqué sur la 

démographie et le risque d’extinction des espèces. Que se passe-t-il si on les incorpore à un 

modèle démographique ? Quelle est la part des différents types de dépendance étudiés en 

vraie grandeur ? Concourent-ils tous et de quelle manière, à créer des risques d’extinction 

plus élevés que dans les modèles conventionnels ? Un sujet d’étude intéressant est l’Albatros 

d’Amsterdam (Diomedea amsterdamensis), espèce endémique à l’île d’Amsterdam, située 

dans l’extrême sud de l’Océan indien. La population atteint une centaine d’individus, avec 

une dizaine de couples reproducteurs chaque année (Jouventin et al., 1989), il s’agit d’une 

espèce classée en annexe une de la convention de Bonn sur la conservation des espèces 

migratoires (Robertson et Gales, 1998). Des études de démographie et d’analyse de viabilité 

des populations ont été effectuées sur cette espèce (Weimerskirch et al., 1997), en particulier 

pour déterminer l’impact de la pêche palangrière et des hameçons utilisés par cette dernière 

sur la survie adulte et donc sur la démographie de l’espèce.  Dans ces études, les phénomènes 

d’interactions entre individus n’ont pas été pris en compte. Nous allons donc, à partir des 

traits d’histoire de vie utilisés dans ces modèles, construire différents modèles de 

démographie, en prenant en compte alternativement puis simultanément différents facteurs de 

dépendance.  

En résumé, les Albatros vivent en moyenne 20 ans, accèdent à la reproduction entre 6 et 

9 ans ; ce sont des oiseaux monogames, les couples formés sont stables. Les animaux se 

reproduisent une année sur deux, avec à chaque fois une seule ponte (Schreiber et Burger, 

2001). La population a été divisée en 38 classes différentes, pour des classes d’âges allant de 

1 à 20, mais pour les individus âgés de 6 à 20 ans les classes ont été subdivisées : entre 6 et 9 

ans trois catégories différentes existent ; les individus immatures, les individus reproducteurs 

et les individus sexuellement matures mais non reproducteurs. A partir de 10 ans, tous les 

individus sont sexuellement matures, mais du fait de la reproduction biennale, seule une partie 

de cette population se reproduit. Le modèle qui nous sert de comparaison comporte de la 

stochasticité démographique et un effet de densité dépendance. On étudie l’effectif d’une 

population (la somme des effectifs de chaque classe d’âge) sur 100 pas de temps, avec 3000 

répétitions.  La probabilité d’extinction cumulée correspond au nombre de trajectoires éteintes 

à chaque pas de temps par rapport au nombre de répétions. Le critère de persistance considéré 
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est classiquement le temps pour lequel 95% des trajectoires sont éteintes. La 

probabilité d’extinction annuelle est estimée sur les 40 derniers pas de temps.  

 

7-1 Stochasticité environnementale  

 

Comme nous l’avons vu dans la quatrième partie, la stochasticité environnementale 

correspond à l’existence d’une corrélation entre individus. Les lois de probabilités des 

paramètres de survie et de reproduction varient alors aléatoirement d’un pas de temps à 

l’autre. Dans notre modèle, la variation due à l’environnement est modélisée par une variable 

aléatoire V, de loi uniforme. Cette variable modifie alors l’espérance des  lois de probabilités 

de survie et de reproduction de la population. Le problème consiste à choisir l’intervalle de V, 

qui détermine la variance de l’environnement. Dans un  premier modèle V est tiré dans un 

intervalle de [-0,1 à 0,1] puis dans un deuxième intervalle de plus grande amplitude : [-0,4 à 

0,4].  Ainsi nous pouvons jauger l’effet de l’amplitude de l’intervalle de V sur les risques 

d’extinction estimés par le modèle. 

 Par rapport à un modèle de référence, similaire mais sans stochasticité 

environnementale, les trajectoires sont beaucoup plus variables lorsque l’on ajoute de la 

stochasticité environnementale et le temps d’extinction de la population est plus court 

(Fig.16). L’amplitude de l’intervalle dans lequel on tire la variable environnementale modifie 

énormément le temps d’extinction obtenu par simulation : plus la variance de l’environnement 

est importante, plus le risque d’extinction augmente. L’amplitude de l’intervalle correspond à 

la valeur de notre coefficient de corrélation ρ de notre étude générale, avec ρ égal à la 

variance de V : plus il augmente et plus la variance de V augmente. L’exemple de l’Albatros 

confirme bien l’effet de la dépendance générale entre individus : plus elle est forte, plus le 

risque d’extinction augmente. Retrouve-t-on aussi les mêmes conclusions dans le cas d’une 

dépendance particulière ? 
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Figure 16 : Probabilité d’extinction cumulée d’une population d’Albatros d’Amsterdam par simulation pour 
différentes intensités de stochasticité environnementale : intervalle d’amplitude 0,4 (….) ; 0,1 (----) et sans 
stochasticité environnementale (traits pleins). La droite y=0.95 représente la probabilité seuil pour laquelle 95% 
des trajectoires sont éteintes.  
 

7-2 Dépendance parents-jeunes  

 

Le soin aux jeunes poussins est assuré par les deux parents, aussi bien pour l’incubation 

que pour l’élevage du jeune. Si un des deux parents meurt durant cette période, l’oisillon 

meurt systématiquement (Lequette, 1992). Le modèle général est modifié de façon à prendre 

en compte ce phénomène : les adultes qui ne survivent pas ne donnent pas de descendance. Le 

taux de survie appliqué aux individus de la première classe d’âge est réajusté de façon à avoir 

le même taux de survie des oisillons dans les deux modèles. 

On observe alors que l’extinction est plus importante lorsque l’on considère la 

dépendance parents-enfants (Fig. 17) , le temps d’extinction est plus court et la probabilité 

annuelle d’extinction plus élevée, comme ce que l’on avait prédit dans la deuxième partie. Si 

l’on rajoute en plus dans notre modèle de la stochasticité environnementale, le temps 

d’extinction diminue de manière encore plus importante, les deux facteurs interagissent. Cela 

démontre d’autant plus l’intérêt de prendre en compte ce type de dépendances dans les études 

ultérieures d’analyse de viabilité des populations. 
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Figure 17 : Probabilité d’extinction cumulée d’une population d’Albatros d’Amsterdam par simulation avec un 
effet de dépendance parents-jeunes (----), ou bien de la stochasticité environnementale avec un intervalle 
d’amplitude 0,4 (….) ; les deux effets simultanés (.-.-.-) et sans aucun effet  (traits pleins). La droite y=0.95 
représente la probabilité seuil pour laquelle 95% des trajectoires sont éteintes.  
 

7-3 Effet allee sur le veuvage et le coût de la reformation des couples 

 

Les couples formés chez les Albatros sont très stables, et durent toute la vie de l’animal, 

sauf rares exceptions (Lequette, 1992). Ils se forment alors que les individus ne sont pas 

encore matures. Lorsqu’un des deux partenaires meurt, le partenaire survivant, veuf, doit 

trouver un nouveau partenaire. Une telle reformation d’un couple demande en moyenne plus 

de 2 années, dans le cas de l’Albatros hurleur D. Exulans (Lequette, 1992), avec un minimum 

d’un an, dans des conditions très favorables. Le temps perdu lors du changement de partenaire 

a un impact important sur le succès reproducteur de l’individu.  Dans les petites populations, 

pour un individu, l’occasion de trouver un tel partenaire est faible, et cela peut entraîner un 

coût important, en retardant d’une année supplémentaire la reproduction. Pour modéliser cet 

effet, les individus non reproducteurs qui ne survivent pas laissent autant de veufs et veuves. 

Selon le nombre de ces veufs, ils vont mettre un ou deux ans pour accéder à un nouveau 

partenaire, ce qui représente autant d’années de décalage dans la reproduction.  Le nombre 

d’individus qui vont mettre un an de plus à accéder à la reproduction est déterminé par :  
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Nv=nombre de veufs qui perdent deux années 

N=nombre  total de veufs 

K=effectif seuil : pour N<K, Nv=N : tous les veufs perdent deux années 

      pour N>K, Nv<N, certains veufs ne perdent qu’une année 

⎟
⎠
⎞

⎜
⎝
⎛ −

= K
N

NNv
15,0

 

 Il existe peu de différence dans nos simulations (Fig.18) entre un modèle incorporant un 

effet Allee et  le modèle de référence. Même si l’on ajoute de la stochasticité 

environnementale, il n’y a pas d’effet Allee qui ressorte. Ces résultats ne sont pas en accord 

avec ceux obtenus dans la 5ième partie, qui montraient au contraire un fort effet Allee sur les 

probabilités d’extinction. Cela peut s’expliquer par un taux de survie adulte très élevé, et  

donc une probabilité faible d’être veuf  faible, ce qui ressemblerait plus à de la stochasticité 

démographique qu’à un véritable effet Allee. Le coût de la reformation des couples appliqué à 

l’Albatros d’Amsterdam n’est peut-être pas le meilleur exemple d’effet Allee. 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 18: Probabilité d’extinction cumulée d’une population d’Albatros d’Amsterdam par simulation avec un 
effet Allee (----), ou bien de la stochasticité environnementale avec un intervalle d’amplitude 0,4 (….) ; les deux 
effets simultanés (.-.-.-) et sans aucun effet  (traits pleins). La droite y=0.95 représente la probabilité seuil pour 
laquelle 95% des trajectoires sont éteintes.  



50  

 
 

Discussion 
 
 
 

Comme le laissaient pressentir des réflexions générales sur l’analyse des risques, les 

dépendances entre individus sont donc susceptibles d’influencer fortement les probabilités 

d’extinction des populations. Que ce soit dans le cas d’une dépendance générale équivalente à 

de la stochasticité environnementale ou une dépendance particulière entre certains individus, 

la valeur de la probabilité d’extinction issue de modèles simples et robustes augmente de 

manière importante dès qu’une dépendance est considérée. Ce résultat est vérifié à la fois dans 

des analyses théoriques et dans l’exemple d’un modèle démographique appliqué à l’Albatros 

d’Amsterdam. 

 

Ce travail sera approfondi dans le cadre d’une thèse de doctorat en Sciences, sous la 

direction de Jean-Dominique Lebreton, au sein de l’équipe de biométrie du Centre d’Ecologie 

Fonctionnelle et Evolutive (CEFE). En effet, cette étude encore très générale sur les effets de 

dépendances entre individus sur les risques d’extinction ouvre à beaucoup de perspectives, à 

la fois théoriques sur les risques liés à l’environnement aléatoire, à relier aux connaissances 

acquises par d’autres méthodes, et sur des applications plus pratiques en biologie de la 

conservation et en dynamique des populations. 

 

Le cas d’une dépendance générale entre individus correspond comme nous l’avons 

montré à de la stochasticité environnementale, c’est-à-dire à une variation aléatoire dans le 

temps des paramètres démographiques de tous les individus d’une population.  Effectivement 

sous cette forme elle est de plus en plus prise en compte dans les modèles d’Analyse de 

Viabilité des Populations suite à des études théoriques ayant montré son importance 

(Goodman, 1987 ; Engen, 1998). Mais cela reste une méthode empirique : l’intervalle de 

variation est choisi empiriquement par le modélisateur (Boyce, 1992). L’équivalence 

dépendance générale et stochasticité environnementale devrait permettre de quantifier la 

stochasticité environnementale dans des conditions assez variées en utilisant l’analogie avec 

les théories statistiques sur les modèles d’analyse de variance à effets aléatoires. Nous avons 

suggéré l’utilisation du coefficient intra-classe pour quantifier à partir de suivis de terrain la 
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force de la stochasticité environnementale. Cela permettrait d’une part de vérifier l’utilisation 

de cette mesure, en simulant une stochasticité environnementale à partir d’un jeu de données 

fictif, puis en comparant les résultats obtenus par calcul du coefficient de corrélation intra-

classe et par simulations. Une fois cette vérification faite, il serait intéressant d’étudier dans 

diverses populations animales l’intensité de la stochasticité environnementale, afin de voir si 

toutes les espèces réagissent de la même manière face à un environnement donné, et si tel 

n’est pas le cas, quels facteurs peuvent moduler leur réponse. 

Mais certaines limites subsistent. La stochasticité environnementale représente les 

variations aléatoires de l’environnement, or celles-ci existent à plusieurs échelles de temps et 

d’intensité : les  évènements catastrophiques sont rares mais de forte intensité, et expliquent 

les fortes excursions des populations vers les petits effectifs tandis que les variations de 

l’environnement d’une année sur l’autre sont plutôt considérées comme un bruit de fond. 

Entre les deux, il existe toute une gamme de temps et d’intensité, qui caractérise les régimes 

de perturbation (Shaffer, 1987). Selon la durée dans le temps des études, les variations dans le 

temps des effectifs d’une population caractériseront une certaine stochasticité 

environnementale : une étude très courte aura peu de chance de mettre en évidence des 

évènements environnementaux rares (Ludwig, 1999).  De plus, on suppose l’environnement 

variable de façon indépendante au cours du temps, ce qui n’est pas forcément le cas, il peut 

exister par exemple un phénomène d’autocorrélation temporelle (Legendre , 1993). Enfin, 

nous n’avons traité que des dépendances conduisant à des corrélations positives entre 

individus. Des réflexions sur la quantification de ce type d’évènements sont à développer. 

 

En ce qui concerne l’estimation même du taux d’extinction, il serait intéressant de 

développer une formule d’approximation, permettant d’estimer le taux d’extinction à partir du 

coefficient de corrélation et des paramètres de position de la distribution quasi-stationnaire 

(moyenne, variance, et autres moments centrés). En effet la première approximation faite lors 

de ces travaux, en estimant le taux d’extinction uniquement en fonction de la corrélation entre 

individus et de la moyenne de la distribution quasi-stationnaire (sans tenir compte de sa 

fonction de répartition) n’est pas satisfaisante et de plus amples recherches seraient 

nécessaires. Une piste à suivre serait de réaliser une estimation du taux d’extinction à partir 

d’un développement limité autour de la moyenne de la distribution, et fonction du risque 

d’extinction individuel et de la fonction de répartition de la distribution quasi-stationnaire. 
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Enfin, pour se ramener à des cas concrets de conservation de la faune, dès lors que l’on 

se trouve dans le cas de petites populations, il existe une part démographique aléatoire non 

négligeable et les effectifs d’une population dans le temps suivent des trajectoires non pas 

déterministes mais stochastiques. Dès lors, lorsque l’on estime par recensements à intervalles 

de temps réguliers les effectifs d’une population animale sauvage, on ne fait que tracer une 

des trajectoires possibles des effectifs au cours du temps et chaque point se trouve quelque 

part sur la distribution quasi-stationnaire (Fig. 19). Etudier ces effectifs de population 

uniquement à partir des trajectoires et non des distributions quasi-stationnaires risque de faire 

perdre de l’information et peut-être d’aboutir à des conclusions erronées.  Il serait intéressant 

de tenter de généraliser ce type de modèles à des cas plus complexes de populations 

subdivisées en classes d’âge, ou de sexe…  

 

 

 

 

 

 

 

 

 

 

 
Fig 19 : Relation entre recensements et distribution quasi-stationnaire. Les recensements ne sont qu’une 
réalisation d’un processus de ramification complexe.  

 

 

 

Les dépendances particulières entre individus sont rarement prises en compte. Mis à part 

McCarthy (1994) qui a considère une dépendance entre partenaires chez Méliphage casqué 

(Lichenostomus melanops cassidix),, la grande majorité des études omettent le problème. Or 

du point de vue biologique, les interactions sociales sont présentes chez de nombreuses 

espèces, mammifères et oiseaux en particulier et l’on peut craindre que beaucoup d’analyses 

de viabilité des populations sous-estiment la probabilité d’extinction des populations étudiées. 

Il est donc nécessaire pour réaliser une analyse correcte de viabilité d’une population, d’avoir 



53  

une connaissance globale de la biologie de l’espèce considérée et non uniquement un point de 

vue démographique. Fort heureusement, les interactions sociales entre individus sont de plus 

en plus prises en compte dans les programmes de réintroduction, suite à des échecs 

retentissants. Ainsi, pendant des années, les éléphants réintroduits dans le Parc National du 

Pilanesberg, en Afrique du Sud, étaient de jeunes mâles, les projections démographiques 

montrant qu’il s’agissait de la meilleure solution pour accroître rapidement la population. Or 

ces jeunes mâles se retrouvant souvent seuls ou en troupeaux de jeunes, se sont mis à avoir 

des comportements atypiques, entre autres à éventrer de nombreux rhinocéros. Il s’est révélé 

que la présence de mâles âgés et d’une structure hiérarchique stricte canalisait le 

comportement des jeunes éléphants, et qu’en dehors de cette structure, ils se retrouvaient 

déstabilisés et modifiaient leur comportement (Slotow et Van Dyk, 2001). 
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Conclusion 
 

Chez l’Albatros d’Amsterdam, la dépendance parents-jeunes diminue le temps 

d’extinction de la population de manière très importante. Surtout l’interaction de la 

stochasticité environnementale et de ce type de dépendance modifie considérablement les 

risques d’extinction. Il semble donc que les dépendances particulières, liées au comportement 

social des animaux soient très importantes. Mais ça ne peut être qu’une conclusion 

provisoire : de telles dépendances peuvent être tr
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Annexe 1 : les fonctions génératrices de probabilités 

 
 

Soit X une variable aléatoire discrète de loi { }kXpk == Pr  pour .0≥k  

Sa fonction génératrice notée )(sg X  est définie par : 

∑
≥

==
0

)()(
k

Xk
kX sEspsg  

On dit encore que )(sg X  est la fonction génératrice de la distribution de probabilités 

kp ( 0≥k ). La  fonction génératrice )(sg X  caractérise complètement la variable aléatoire X ; 

elle définit sa distribution de probabilités et ses moments. 

 

Si X1,X2,….,Xm sont m variables aléatoires indépendantes de mêmes lois et de fonctions 

génératrices Xg , alors la fonction génératrice de leur somme  

∑
=

=
m

i
iXZ

1
est : 

    =)(sgZ [ ]mX sg )(  

 

 

Dans un processus de ramification, Zt au temps t est fonction de Zt-1 au temps t-1 tel 

que : 

∑
−

=

=
1

1

tZ

i
it XZ avec )(sg X  la fonction génératrice de X. 

Dans ce cas la fonction génératrice de Z au temps t  est la composée de la fonction 

génératrice de Z au temps t-1 et de la fonction génératrice de X : 

[ ]
44 344 21

ooo
foism

tt sgggsggsg )(....)()( 1 == −  

Si Z représente l’effectif de la population au temps t, on dit que 0 est un état absorbant : 

 

 si Zt=0 alors Xk=0 k∀ >m  et { } 10/0Pr 1 ===+ tt ZZ . 

 

La probabilité que la population soit éteinte à la date t est : 

{ } )0(0Pr ttt gZq ===  
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Annexe 2 : Calcul de la probabilité d’extinction individuelle dans 
une population structurée en âge 

 

Hypothèses : Population structurée en âge avec : 

-survie juvénile : s1 pour i<α , âge de la première reproduction 

-survie adulte : s2  pour i α≥  

-fécondité constante f pour i α≥  :  

 

 

La survie jusqu’à l’âge i, notée lx vaut  (Case, 1999, p79) 2
21

1

1

−
−

=∏ i
i

i sss  et par définition l1=1. 

La proportion iV d’individus d’âge i dans la population peut s’écrire (Case, 1999, page 81): 

)1( 2
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2max

2

2
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2
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ss
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i −=== −
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et 

2

2
2 1

1
s

s i

−
=∑ −   pour i>1 ;  et 

1

2
max

1

2
21

1
11

s
s

ss
V

i

−
==

∑ −

 

et l’équation d’Euler s’écrit : ∑∑ −×== 2
211 i

ii ssflf   

 

En considérant une population à l’équilibre quasi-stationnaire, dont les effectifs sont 

distribués selon une loi de probabilité constante dans le temps, on néglige les variations de la 

probabilité d’extinction individuelle P autour de la moyenne de la distribution.  

 

La probabilité individuelle d’extinction Pi se décompose ainsi : 

pour les individus d’âge i<α ,    Pi=(1-s1)  

 et pour ceux d’âge i>α,            Pi=(1-s2)e-f  

 

On cherche à calculer la probabilité d’extinction individuelle P équivalente à ∏
∞

=0i

V
i

iP  : 

∑

∑
∞

∞
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=

2
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PVPVP
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d’où ( )
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Dans le cas d’une dépendance mère-jeune, si la mère ne survit pas, le jeune non plus, alors la 

probabilité individuelle d’extinction Pi devient : 

Pour les individus d’âge<α Px=(1-s1)  et pour ceux d’âge x>α, Px=(1-s2). 

 

En reprenant le calcul de  ∏
∞
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iPP , et  
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on obtient et d’où ( ) ⎥⎦
⎤

⎢⎣
⎡ −−=

−

)1(1 2

1

1 1

2

ssP s
s

 

 

 

 


