Année 2015

ÉLABORATION DE FICHES INFORMATIVES DESTINÉES AUX PROPRIÉTAIRES DE CHIENS ET DE CHATS ATTEINTS DE MALADIES RESPIRATOIRES CHRONIQUES

THÈSE

Pour le

DOCTORAT VÉTÉRINAIRE

Présentée et soutenue publiquement devant

LA FACULTÉ DE MÉDECINE DE CRÉTEIL

le.....

par

Vincent LEYNAUD

Né le 18 Septembre 1989 à Noisy-le-Grand (Seine-Saint-Denis)

JURY

Président : Pr. Professeur à la Faculté de Médecine de CRÉTEIL

Membres

Directeur : Ghita BENCHEKROUN Maître de conférences à l'ENVA Assesseur : Mathieu MANASSERO Maître de conférences à l'ENVA

Année 2015

ÉLABORATION DE FICHES INFORMATIVES DESTINÉES AUX PROPRIÉTAIRES DE CHIENS ET DE CHATS ATTEINTS DE MALADIES RESPIRATOIRES CHRONIQUES

THÈSE

Pour le

DOCTORAT VÉTÉRINAIRE

Présentée et soutenue publiquement devant

LA FACULTÉ DE MÉDECINE DE CRÉTEIL

le.....

par

Vincent LEYNAUD

Né le 18 Septembre 1989 à Noisy-le-Grand (Seine-Saint-Denis)

JURY

Président : Pr. Professeur à la Faculté de Médecine de CRÉTEIL

Membres

Directeur : Ghita BENCHEKROUN Maître de conférences à l'ENVA Assesseur : Mathieu MANASSERO Maître de conférences à l'ENVA

LISTE DES MEMBRES DU CORPS ENSEIGNANT

Directeur: M. le Professeur GOGNY Marc

Directeurs honoraires: MM. les Professeurs: COTARD Jean-Pierre, MIALOT Jean-Paul, MORAILLON Robert, PARODI André-Laurent, PILET Charles, TOMA Bernard. Professeurs honoraires: Mme et MM.: BENET Jean-Jacques, BRUGERE Henri, BRUGERE-PICOUX Jeanne, BUSSIERAS Jean, CERF Olivier, CHERMETTE René, CLERC Bernard, CRESPEAU François, DEPUTTE Bertrand, MOUTHON Gilbert, MILHAUD Guy, POUCHELON Jean-Louis, ROZIER Jacques

DEPARTEMENT D'ELEVAGE ET DE PATHOLOGIE DES EQUIDES ET DES CARNIVORES (DEPEC) Chef du département par intérim : M. GRANDJEAN Dominique, Professeur - Adjoint : M. BLOT Stéphane, Professeur

UNITE DE CARDIOLOGIE

- Mme CHETBOUL Valérie, Professeur *
- Mme GKOUNI Vassiliki, Praticien hospitalier
- Mme SECHI-TREHIOU, Praticien hospitalier

UNITE DE CLINIQUE EQUINE

- M. AUDIGIE Fabrice, Professeur
- Mme BERTONI Lélia, Maître de conférences contractuel
- Mme BOURZAC Céline, Maître de conférences contractuel
- M. DENOIX Jean-Marie, Professeur
- Mme GIRAUDET Aude, Praticien hospitalier *
- Mme MESPOULHES-RIVIERE Céline, Praticien hospitalier
- Mme TRACHSEL Dagmar, Maître de conférences contractuel

NITE D'IMAGERIE MEDICALE

- Mme PEY Pascaline, Maître de conférences contractuel
- Mme STAMBOULI Fouzia, Praticien hospitalier

UNITE DE MEDECINE

- M. AGUILAR Pablo, Praticien hospitalier
- Mme BENCHEKROUN Ghita, Maître de conférences
- M. BLOT Stéphane, Professeur*
- M. CAMPOS Miguel, Maître de conférences associé
- Mme FREICHE-LEGROS Valérie, Praticien hospitalier
- Mme MAUREY-GUENEC Christelle, Maître de conférences

UNITE DE MEDECINE DE L'ELEVAGE ET DU SPORT

- Mme CLERO Delphine, Maître de conférences contractuel
- M. FONTBONNE Alain, Maître de conférences
- M. GRANDJEAN Dominique, Professeur *
- Mme MAENHOUDT Cindy, Praticien hospitalier
- M. NUDELMANN Nicolas, Maître de conférences
- Mme YAGUIYAN-COLLIARD Laurence, Maître de conférences contractuel

DISCIPLINE: NUTRITION-ALIMENTATION

- M. PARAGON Bernard, Professeur

DISCIPLINE: OPHTALMOLOGIE

- Mme CHAHORY Sabine, Maître de conférences

UNITE DE PARASITOLOGIE ET MALADIES PARASITAIRES

- M. BLAGA Radu Gheorghe, Maître de conférences (rattaché au DPASP)
- Mme COCHET-FAIVRE Noëlle, Praticien hospitalier
- M. GUILLOT Jacques, Professeur
- Mme MARIGNAC Geneviève, Maître de conférences
- M POLACK Bruno Maître de conférences
- Mme RISCO CASTILLO Véronica, Maître de conférences (rattachée au DPASP)

UNITE DE PATHOLOGIE CHIRURGICALE

- M. FAYOLLE Pascal, Professeur
- M. MAILHAC Jean-Marie, Maître de conférences
- M. MANASSERO Mathieu, Maître de conférences contractuel
- M. MOISSONNIER Pierre, Professeur*
- Mme RAVARY-PLUMIOEN Bérangère, Maître de conférences (rattachée au DPASP)
- Mme VIATEAU-DUVAL Véronique, Professeur
- M. ZILBERSTEIN Luca, Maître de conférences

DISCIPLINE: URGENCE SOINS INTENSIFS

- Mme STEBLAJ Barbara, Praticien Hospitalier

DISCIPLINE: NOUVEAUX ANIMAUX DE COMPAGNIE

- M. PIGNON Charly, Praticien hospitalier

DEPARTEMENT DES PRODUCTIONS ANIMALES ET DE LA SANTE PUBLIQUE (DPASP)

Chef du département : M. MILLEMANN Yves, Professeur - Adjoint : Mme DUFOUR Barbara, Professeur

UNITE D'HYGIENE ET INDUSTRIE DES ALIMENTS D'ORIGINE ANIMALE

- M. AUGUSTIN Jean-Christophe, Maître de conférences
- M. BOLNOT François, Maître de conférences *
- M. CARLIER Vincent, Professeur

UNITE DES MALADIES CONTAGIEUSES

- Mme DUFOUR Barbara, Professeur*
- Mme HADDAD/HOANG-XUAN Nadia, Professeur
- Mme PRAUD Anne, Maître de conférences
- Mme RIVIERE Julie, Maître de conférences contractuel

UNITE DE PATHOLOGIE DES ANIMAUX DE PRODUCTION

- M. ADJOU Karim, Maître de conférences
- M. BELBIS Guillaume, Assistant d'enseignement et de recherche contractuel
- M. MILLEMANN Yves, Professeur
- Mme ROUANNE Sophie, Praticien hospitalier

UNITE DE REPRODUCTION ANIMALE

- Mme CONSTANT Fabienne, Maître de conférences
 M. DESBOIS Christophe, Maître de conférences (rattaché au DEPEC)
- Mme MASSE-MOREL Gaëlle, Maître de conférences contractuel
- M. MAUFFRE Vincent, Assistant d'enseignement et de recherche contractuel
- Mme EL BAY Sarah, Praticien hospitalier

UNITE DE ZOOTECHNIE, ECONOMIE RURALE

- M. ARNE Pascal, Maître de conférences
- M. BOSSE Philippe, Professeur*
- M. COURREAU Jean-François, Professeur
- Mme DE PAULA-REIS Alline, Maître de conférences contractuel
- Mme GRIMARD-BALLIF Bénédicte, Professeur
- Mme LEROY-BARASSIN Isabelle, Maître de conférences
- M. PONTER Andrew, Professeur
- Mme WOLGUST Valérie, Praticien hospitalier

DEPARTEMENT DES SCIENCES BIOLOGIQUES ET PHARMACEUTIQUES (DSBP)

Chef du département : Mme COMBRISSON Hélène, Professeur - Adjoint : Mme LE PODER Sophie, Maître de conférences

UNITE D'ANATOMIE DES ANIMAUX DOMESTIQUES

- M. CHATEAU Henry, Maître de conférences
- Mme CREVIER-DENOIX Nathalie, Professeur
- M. DEGUEURCE Christophe, Professeur Mme ROBERT Céline, Maître de conférences
- DISCIPLINE : ANGLAIS
- Mme CONAN Muriel. Professeur certifié

UNITE DE BIOCHIMIE

- M. BELLIER Sylvain, Maître de conférences*
- Mme LAGRANGE Isabelle, Praticien hospitalier
- M. MICHAUX Jean-Michel, Maître de conférences

DISCIPLINE : BIOSTATISTIQUES

- M. DESQUILBET Loïc, Maître de conférences

DISCIPLINE: EDUCATION PHYSIQUE ET SPORTIVE

- M. PHILIPS Pascal, Professeur certifié

DISCIPLINE: ETHOLOGIE

- Mme GILBERT Caroline, Maître de conférences

UNITE DE GENETIQUE MEDICALE ET MOLECULAIRE

- Mme ABITBOL Marie, Maître de conférences
- M. PANTHIER Jean-Jacques, Professeur*

UNITE D'HISTOLOGIE, ANATOMIE PATHOLOGIQUE

- Mme CORDONNIER-LEFORT Nathalie, Maître de conférences*
- M. FONTAINE Jean-Jacques, Professeur
- Mme LALOY Eve. Maître de conférences contractuel
- M. REYES GOMEZ Edouard, Maître de conférences

UNITE DE PATHOLOGIE GENERALE MICROBIOLOGIE, IMMUNOLOGIE

- M. BOULOUIS Henri-Jean, Professeur
- Mme LE ROUX Delphine, Maître de conférences
- Mme QUINTIN-COLONNA Françoise, Professeur*

UNITE DE PHARMACIE ET TOXICOLOGIE

- Mme ENRIQUEZ Brigitte, Professeur
- M. PERROT Sébastien, Maître de conférences - M. TISSIER Renaud, Professeur*
- UNITE DE PHYSIOLOGIE ET THERAPEUTIQUE
- Mme COMBRISSON Hélène, Professeur - Mme PILOT-STORCK Fanny, Maître de conférences

- M. TIRET Laurent, Maître de conférences*

UNITE DE VIROLOGIE - Mme LE PODER Sophie, Maître de conférences *

DISCIPLINE: SCIENCES DE GESTION ET DE MANAGEMENT

- Mme FOURNEL Christelle, Maître de conférences contractuel

REMERCIEMENTS

Au Professeur de la faculté de Médecine de Créteil,

Professeur à la faculté de Médecine de Créteil,

Pour nous avoir fait l'honneur d'accepter de présider notre jury de thèse,

Hommage respectueux.

À Madame Ghita Benchekroun,

Maître de conférences à l'École Nationale Vétérinaire d'Alfort,

Pour avoir accepté de diriger et corriger ce travail,

Pour sa grande disponibilité et sa générosité ayant permis de remporter une réelle course contre la montre lors de l'élaboration de ce manuscrit,

Pour sa passion de ce merveilleux domaine qu'est la médecine interne et sa capacité naturelle à la transmettre,

Qu'elle trouve ici l'expression de mes sincères remerciements et de toute ma reconnaissance.

À Monsieur Mathieu Manassero,

Maître de conférences à l'École Nationale Vétérinaire d'Alfort,

Pour avoir accepté l'assessorat de ce travail.

Pour sa grande disponibilité et pour avoir accordé du temps, aussi précieux soit-il, à la relecture et la correction du manuscrit,

Pour y avoir apporté ses connaissances chirurgicales ainsi que toute sa rigueur,

Qu'il trouve ici l'expression de mes sincères remerciements et de toute ma reconnaissance.

À Madame Valérie Freiche, Madame Dominique Béchu, Monsieur Jérémy Béguin et Monsieur Gil Wittke,

Pour avoir, d'une façon ou d'une autre, contribué à l'élaboration de ce travail, Sincères remerciements.

TABLE DES MATIÈRES

LISTE DES FIGURES	
LISTE DES TABLEAUX	8
LISTE DES ANNEXES	
LISTE DES ABRÉVIATIONS	9
INTRODUCTION	
PREMIÈRE PARTIE : ÉTUDE SPÉCIALE DES MALADIES RESPIRATOIRES	
CHRONIQUES À TRAITEMENT AU LONG COURS LES PLUS FRÉQUENTES	. 13
I. LE SYNDROME OBSTRUCTIF DES RACES BRACHYCÉPHALES	
A. Définition de la maladie	. 17
1. Malformations primaires	. 17
1.1. Elongation du voile du palais	
1.2. Sténose des narines	
1.3. Hypoplasie trachéale	. 17
1.4. Macroglossie	. 17
2. Malformations secondaires	
2.1. Éversion des ventricules laryngés	
2.2. Collapsus laryngé	
2.3. Collapsus trachéal et/ou bronchique	
2.4. Lésions inflammatoires du tractus respiratoire	
B. Étiopathogénie	
C. Épidémiologie	
D. Signalement et signes cliniques	
1. Signes cliniques fréquents	
2. Autres signes cliniques	
3. Complications	
E. Démarche diagnostique	
1. Examen clinique	
2. Diagnostic différentiel	
3. Examens complémentaires	
3.1. Examens de routine	
3.1.1. Analyses sanguines classiques	
3.1.2. Radiographies thoraciques et cervicales	
3.1.3. Examen de la cavité buccale et du larynx sous sédation	
3.2. Examens spécialisés	
3.2.1. Analyse des gaz du sang	
3.2.2. Endoscopie	
3.2.3. Examen tomodensitométrique	
3.3. Examens réservés au milieu hospitalier universitaire	
3.3.1. Généralités	
3.3.2. Pléthysmographie barométrique du corps entier (PBCE)	
F. Traitement	
1. Traitement hygiénique	
2. Traitement médical	
2.1. Généralités	
2.2. Traitement des troubles digestifs	
3. Traitement des complications	
3.1. Bronchopneumonie par fausse déglutition	
3.2. SDRA	
3.3. Coup de chaleur	
4. Traitement chirurgical	

	4.1. Sténose des narines	
	4.2. Élongation du voile du palais	29
	4.3. Éversion des ventricules laryngés	29
	4.4. Autres malformations	30
	4.5. Gestion post-opératoire	30
G.	Pronostic	30
II. L	A BRONCHITE CHRONIQUE CANINE	33
A.	Présentation de la maladie	33
B.	Étiopathogénie	33
C.	Épidémiologie	
D.	Signalement et signes cliniques	
1.		
2.		
3.		
E.	Démarche diagnostique	
1.		
2.	*	
3.		
	3.1. Examens de routine	
	3.1.1. Analyses sanguines classiques	
	3.1.2. Radiographies thoraciques	
	3.1.3 Test de marche pendant 6 minutes	
	3.2. Examens spécialisés	
	3.2.1. Bronchoscopie et lavage broncho-alvéolaire (LBA)	
	3.2.2. Examen tomodensitométrique	
	3.2.3. Echocardiographie	
	3.3. Examens réservés au milieu hospitalier universitaire	
	3.3.1. Propeptide amino-terminal du procollagène de type III (PIIINP)	
	3.3.2. Endothéline-1 (ET1)	
	3.3.3. Pléthysmographie barométrique du corps entier (PBCE)	
F.	Traitement	
1.		
	1.1 Glucocorticoïdes	39
	1.2. Bronchodilatateurs	
	1.3. Antitussifs	
2.		
	Traitement des complications	
٥.	3.1. Surinfection bactérienne	
	3.2. HTAP	
	3.3. Bronchiectasie chronique	
G.	Pronostic	
III.	LE COLLAPSUS TRACHEO-BRONCHIQUE DU CHIEN	
Α.	Définition de la maladie	
В.	Étiopathogénie	
C.	Épidémiologie	
D.	Signalement et signes cliniques	
ъ. 1.		
2.		
3.		
5. E.	Démarche diagnostique	
ъ. 1.	6 1	
2.	•	
2. 3.	E	
٥.	Examens complémentaires	40

3.1. Examens de routine	
3.1.1. Analyses sanguines classiques	46
3.1.2. Radiographies cervicales et thoraciques	46
3.2. Examens spécialisés	47
3.2.1. Fluoroscopie	
3.2.2. Bronchoscopie et LBA	
3.2.3. Examen tomodensitométrique	
F. Traitement	
1. Mesures hygiéniques	
2. Traitement médical	
2.1. Antitussifs	
2.2. Glucocorticoïdes	
2.3. Bronchodilatateurs	
2.4. Le stanozolol	
2.5. Traitement des complications	
3. Traitement chirurgical	
3.1. Collapsus trachéal	
3.1.1. Stent intra-luminal	
3.1.2. Prothèses extra-luminales	
3.2. Collapsus bronchique	
3.3. Gestion post-opératoire	
G. Pronostic	
A. Présentation des maladies 1. L'asthme félin	
2. La bronchite chronique	
B. Étiopathogénie	
1. L'asthme félin	
2. La bronchite chronique	
C. Epidémiologie	
D. Signalement et signes cliniques	
1. Signes cliniques fréquents	
2. Autres signes cliniques	
3. Complications	57
E. Démarche diagnostique	
1. Examen clinique	57
2. Diagnostic différentiel	57
3. Examens complémentaires	57
3.1. Examens de routine	57
3.1.1. Analyses sanguines classiques	
3.1.2. Radiographies thoraciques	
3.1.3. Exclusion des causes parasitaires	
3.2. Examens spécialisés	
3.2.1. Bronchoscopie et LBA	
3.2.2. Examen tomodensitométrique	
3.3. Examens réservés au milieu hospitalier universitaire	
3.3.1. Généralités	
3.3.2. Pléthysmographie barométrique du corps entier (PBCE)	
3.3.3. Diagnostic immunologique	
F. Traitement	
Mesures hygiéniques Troitement médical	
2. Traitement médical	
2.1. Glucocorticoïdes	62

2.2. Bro	nchodilatateurs	62
2.3. Trai	itement antiparasitaire	63
2.4. Cicl	losporine	63
	mplémentation en oméga 3	
	nunothérapie	
2.7. Trai	itement des complications	64
2.7.1. D	Oétresse respiratoire aiguë	64
2.7.2. St	urinfections bactériennes	64
V. FIBROSE PUI	LMONAIRE DU CHIEN	65
	le la maladie	
	gie	
_	t et signes cliniques	
<u>U</u>	iniques fréquents	
	gnes cliniques	
-	tions	
	liagnostique	
	clinique	
_	ic différentiel	
	complémentaires	
	mens de routine	
	nalyses sanguines classiques	
	adiographies thoraciques	
	est de marche pendant 6 minutes	
	umens spécialisés	
	taz du sang artériel	
	ronchoscopie et LBAxamen tomodensitométrique	
	chocardiographie	
	iopsies pulmonaires	
	imens réservés au milieu hospitalier universitaire	
	Iarqueurs génétiques	
	ropeptide amino-terminal du procollagène de type III (PIIINP)	
	ndothéline-1 (ET1)	
	ndotherne 1 (E11)	
	nt médical	
	cocorticoïdes	
	nchodilatateurs.	
	itussifs	
	ifibrotiques	
	cétylcystéine	
	nt hygiénique	
	nt des complications	
3.1. HT.	<u>.</u>	
3.2. Sur	infections bactériennes	
G. Pronostic		74
VI. BRONCHO	PNEUMONIE ÉOSINOPHILIQUE DU CHIEN	75
	le la maladie	
,	nie	
	gie	
D. Signalement	t et signes cliniques	75
 Signes cli 	iniques fréquents	75
_	4	

2. Autres signes cliniques	
3. Complications	76
E. Démarche diagnostique	76
1. Examen clinique	76
2. Diagnostic différentiel	
3. Examens complémentaires	76
3.1. Examens de routine	76
3.1.1. Analyses sanguines classiques	76
3.1.2. Radiographies thoraciques	77
3.1.3. Exclusion des causes parasitaires	77
3.2. Examens spécialisés	78
3.2.1. Bronchoscopie et LBA	
3.2.2. Analyse des gaz du sang artériel	79
3.2.3. Examen tomodensitométrique	
3.3. Examens réservés au milieu hospitalier universitaire.	
3.3.1. Biomarqueurs PIIINP et ET1	
3.3.2. Pléthysmographie barométrique du corps entier	
F. Traitement	80
1. Glucocorticoïdes	80
2. Antibiotiques	
3. Traitement antiparasitaire	81
G. Pronostic	
DEUXIÈME PARTIE : ÉLABORATION DES DOCUMENTS D'II	
MÉDICALES SUR LES MALADIES RESPIRATOIRES CHRONI	
ET DU CHAT	83
I. INTRODUCTION	
II. MATÉRIELS ET MÉTHODES	
A. Sélection des sujets à traiter	
1. Critères de sélection	
2. Maladies retenues	
B. Sources d'informations sur les maladies	
C. Réalisation des documents	
1. Le fond	
2. La forme	
3. Logiciels utilisés	
III. RÉSULTATS	
A. Le modèle	
B. Le syndrome obstructif des races brachycéphales (SORB)	
1. Présentation de la maladie	
2. Examens complémentaires	
3. Traitement et recommandations	
4. Pronostic	
5. Conclusion	
C. La bronchite chronique canine	93
1. Présentation de la maladie	93
2. Examens complémentaires	
3. Traitement et recommandations	
4. Pronostic	
5. Conclusion	
D. Le collapsus trachéo-bronchique du chien	
1. Présentation de la maladie	
2. Examens complémentaires	95
3. Traitement et recommandations	95

4. Pronostic	95
5. Conclusion	95
E. Les maladies bronchiques félines	98
1. Présentation de la maladie	98
2. Examens complémentaires	98
3. Traitement et recommandations	98
4. Pronostic	98
5. Conclusion	99
F. La fibrose pulmonaire du chien	100
1. Présentation de la maladie	100
2. Examens complémentaires	100
3. Traitement et recommandations	100
4. Pronostic	100
5. Conclusion	100
G. La bronchopneumonie éosinophilique	102
1. Présentation de la maladie	102
2. Examens complémentaires	102
3. Traitement et recommandations	102
4. Pronostic	102
5. Conclusion	102
IV. DISCUSSION	105
CONCLUSION	109
BIBLIOGRAPHIE	111
ANNEVEC	122

LISTE DES FIGURES

Figure 1. Les différents stades du collapsus laryngé	18
Figure 2. Diagnostic radiographique de l'hypoplasie trachéale	23
Figure 3. Images endoscopiques des composantes anatomiques du SORB	24
Figure 4. Schématisation de trois techniques de rhinoplastie	28
Figure 5. Schématisation de la palatoplastie	
Figure 6. Schématisation de l'exérèse des ventricules laryngés	30
Figure 7. Schéma simplifié de la pathogénie de la bronchite chronique canine	33
Figure 8. Radiographie thoracique d'un chien atteint de BCC	36
Figure 9. Images bronchoscopiques classiques obtenues lors de bronchite chronique canine	37
Figure 10. Examen cytologique après cytocentrifugation (A) et étalement direct (B) du LBA	
d'un animal atteint de BCC	
Figure 11. Photographie du dispositif AeroDawg®	
Figure 12. Schéma des modifications anatomiques de la trachée lors de CTB	
Figure 13. Schématisation de la pathogénie du collapsus trachéo-bronchique	44
Figure 14. Radiographie en phase inspiratoire d'un chien atteint de collapsus trachéal extra-	
thoracique	46
Figure 15. Radiographie en phase expiratoire d'un chien atteint de collapsus trachéal intra-	
thoracique	
Figure 16. Schéma des différents grades de collapsus trachéal	
Figure 17. Image par radiographique d'un stent en place	
Figure 18. Schématisation du placement d'une prothèse extra-luminale	
Figure 19. Images radiographiques classiques lors de maladie bronchique féline	58
Figure 20. Examen cytologique après cytocentrifugation du LBA d'un chat atteint d'asthme	
félin	59
Figure 21. Examen cytologique après cytocentrifugation du LBA d'un chat atteint de bronchite	
chronique	59
Figure 22. Schéma de l'organisation des échanges pulmonaires	
Figure 23. Radiographies thoraciques de chiens atteints de fibrose pulmonaire	
Figure 24. Images radiographiques de chiens atteints de bronchopneumonie éosinophilique	77
Figure 25. Examen cytologique après cytocentrifugation du LBA d'un chien atteint de	70
bronchopneumonie éosinophilique	79
Figure 26. La perte d'information lors de la transmission du message d'après Béguin (2012)	
Figure 27. Représentation graphique de la loi de Haas d'après Béguin (2012)	86
Figure 28. Représentation graphique de la répartition en pourcentage des différents types de	0.0
récepteurs, d'après Béguin (2012)	86
Figure 29. Miniature de la fiche d'informations médicales présentant le syndrome obstructif	02
des races brachycéphales (recto et verso)	92
Figure 30. Miniature de la fiche d'informations médicales présentant la bronchite chronique	0.4
(recto et verso)	94
Figure 31. Miniature de la fiche d'informations médicales présentant le collapsus trachéo-	0.0
bronchique (recto et verso)	96
	07
du collapsus trachéo-bronchique	97
Figure 33. Miniature de la fiche d'informations médicales présentant les maladies bronchiques	00
félines (recto et verso)	99
Figure 34. Miniature de la fiche d'informations médicales présentant la fibrose pulmonaire	. 101
du chien (recto et verso)	. 101
éosinophilique (recto et verso)	. 103
NA 63110 (1911) NO 11 NA 11 A A 11 A	. 11//

LISTE DES TABLEAUX

Tableau 1. Principales malformations du SORB et leurs fréquences	19
Tableau 2. Grading du collapsus trachéal d'après Tangner et Hobson (1982)	
Tableau 3. Grading du collapsus bronchique d'après Bottero et al. (2013)	48
Tableau 4. Signes tomodensitométriques de la FP d'après Johnson et al. (2005)	70

LISTE DES ANNEXES

Annexe 1. Document d'information médicale présentant le syndrome obstructif des races brachycéphales.

Annexe 2. Document d'information médicale présentant la bronchite chronique canine.

Annexe 3. Documents d'information médicale présentant le collapsus trachéo-bronchique du chien.

Annexe 4. Document d'information médicale présentant les maladies bronchiques félines.

Annexe 5. Document d'information médicale présentant la fibrose pulmonaire du chien.

Annexe 6. Document d'information médicale présentant la bronchopneumonie éosinophilique du chien.

LISTE DES ABRÉVIATIONS

BCC: Bronchite Chronique Canine

BPE: Broncho-Pneumonie Éosinophilique

CHUVA: Centre Hospitalier Universitaire Vétérinaire d'Alfort

CTB: Collapsus Trachéo-Bronchique

ENVA : École Nationale Vétérinaire d'Alfort ENVT : École Nationale Vétérinaire de Toulouse

FP: Fibrose Pulmonaire

GNE : Granulocyte Éosinophile GNN : Granulocyte Neutrophile

HTAP: HyperTension Artérielle Pulmonaire

LBA : Lavage Broncho-Alvéolaire MGG : May-Grünwald Giemsa

SDRA : Syndrome de Détresse Respiratoire Aiguë SORB : Syndrome Obstructif des Races Brachycéphales

WHWT: West Highland White Terrier

INTRODUCTION

Les maladies respiratoires des carnivores domestiques représentent souvent des défis diagnostiques et thérapeutiques du fait de la faible spécificité et de l'évolution parfois insidieuse de leurs signes cliniques (Silverstein et Drobatz, 2010). Classiquement, une maladie respiratoire est dite « chronique » lorsque ses signes cliniques sont exprimés depuis au moins 2 mois (Silverstein et Drobatz, 2010; Corcoran *et al.*, 2011). L'une des difficultés dans le diagnostic de ces maladies est que leurs manifestations cliniques sont fréquemment considérées comme normales par les propriétaires, imputées à l'âge (lors de bronchite chronique ou de fibrose pulmonaire par exemple) ou parfois à la race (principalement lors de syndrome brachycéphale). Ces maladies peuvent pourtant toutes évoluer vers une situation mettant en jeu le pronostic vital de l'animal. C'est pourquoi il est primordial de savoir les détecter rapidement afin qu'une prise en charge adéquate (médicale, chirurgicale et/ou hygiénique) puisse prévenir ces décompensations.

Le rôle du vétérinaire, au-delà de diagnostiquer la maladie, consiste alors en l'information du propriétaire afin que ce dernier prenne conscience que son animal est malade et qu'il a besoin d'une prise en charge. Ce point est d'autant plus important que c'est le propriétaire qui est chargé d'administrer le traitement à la maison, souvent sur un long terme et parfois même à vie pour ces maladies chroniques. Pour cette raison, un engagement total de sa part est souhaité. Cette transmission d'information s'est pendant longtemps limitée aux instructions orales du vétérinaire lors de la consultation; or, l'utilisation de plusieurs supports de communication a récemment prouvé son utilité que ce soit en médecine humaine ou vétérinaire (Johnson et Standford, 2005; Adams et Frankel, 2007). La mise à disposition de fiches informatives destinées aux détenteurs d'animaux se démocratise ainsi de plus en plus dans le monde vétérinaire, faisant d'ailleurs l'objet de plusieurs thèses d'exercice vétérinaire en France ces dernières années (Laniesse, 2011; Planté, 2011; Béguin, 2012).

L'objectif de cette thèse est donc d'étoffer « l'arsenal » actuel en termes de communication écrite avec les propriétaires en se concentrant sur les maladies respiratoires chroniques du chien et du chat les plus fréquentes. Nous ferons tout d'abord un point sur les connaissances actuelles à propos des maladies sélectionnées pour ce travail avant de nous intéresser au procédé de réalisation des fiches d'information médicale les concernant.

PREMIÈRE PARTIE

ÉTUDE SPÉCIALE DES MALADIES RESPIRATOIRES CHRONIQUES À TRAITEMENT AU LONG COURS LES PLUS FRÉQUENTES

L'objectif de cette première partie est de faire un point bibliographique sur les principales maladies respiratoires chroniques nécessitant une prise en charge sur le long cours et donc pour lesquelles l'implication du propriétaire doit être maximale. Cela passe par une communication effective entre celui-ci et son vétérinaire, qui se voudra renforcée par le support écrit proposé dans cette thèse.

Les maladies traitées sont :

- Le syndrome obstructif des races brachycéphales ;
- La bronchite chronique canine;
- Le collapsus trachéo-bronchique du chien ;
- Les maladies bronchiques félines à savoir l'asthme félin et la bronchite chronique féline ;
- La fibrose pulmonaire du chien;
- La bronchopneumonie éosinophilique du chien.

La présentation de chaque maladie suivra un plan similaire en exposant, dans cet ordre : l'étiopathogénie, les données épidémiologiques, l'expression clinique, la démarche diagnostique, les mesures thérapeutiques et enfin, le pronostic.

Les éléments recueillis dans cette partie serviront de base pour alimenter le contenu des fiches d'information.

I. LE SYNDROME OBSTRUCTIF DES RACES BRACHYCÉPHALES

Le syndrome obstructif des races brachycéphales (SORB) est à l'origine de troubles respiratoires souvent délétères pour le bien-être de l'animal. Pourtant, d'après une étude de Packer *et al.* (2012), une grande partie de propriétaires de chiens atteints de SORB ne se disent pas alarmés par les difficultés respiratoires de leur animal, les considérant d'ailleurs comme « normales compte tenu de la race » dans 58 % des cas. Ceci pose problème dans le cadre d'une maladie évolutive telle que le SORB : les propriétaires risquent alors de retarder leur visite chez le vétérinaire jusqu'à ce que les troubles respiratoires soient marqués à graves alors qu'un tel stade aurait pu être évité avec une prise en charge précoce. Le vétérinaire a donc ici un rôle d'information primordial, dès la première visite vaccinale, chez les races concernées.

A. Définition de la maladie

Le SORB est directement lié à l'anatomie des races brachycéphales. Il se met en place dès le développement embryonnaire et regroupe un ensemble de malformations congénitales dites primaires (élongation et/ou hypertrophie du voile du palais, sténose des narines, hypoplasie trachéale, macroglossie, os turbinaux aberrents) auxquelles s'ajoutent des malformations secondaires (éversion des ventricules laryngés, collapsus laryngé, collapsus trachéal et/ou bronchique, lésions inflammatoires, ...) (Grand et Bureau, 2011; Lodato et Hedlund, 2012a). Le nombre de malformations et leur degré de gravité sont variables d'un chien à l'autre (Lodato et Hedlund, 2012a).

1. Malformations primaires

1.1. Elongation du voile du palais

Chez les chiens non-brachycéphales, le palais mou se termine juste avant la pointe de l'épiglotte permettant notamment une fermeture temporaire des voies respiratoires lors de la déglutition. Chez les races brachycéphales, il est plus long de quelques millimètres et souvent plus épais si bien qu'il peut parfois s'étendre jusqu'à l'entrée du larynx et obstruer (au moins partiellement) la *rima glottis*, zone la plus étroite des voies respiratoires (Grand et Bureau, 2011; Lodato et Hedlund, 2012a).

1.2. Sténose des narines

Les narines sont les voies d'entrée de l'air dans l'appareil respiratoire en partie formées par des cartilages constituant la réelle trame de soutien et conditionnant leur forme. Chez les races brachycéphales, le cartilage dorsolatéral est souvent anormalement court, épais et dévié médialement ce qui provoque une diminution de l'ouverture (sténose) des narines (Monnet, 2003).

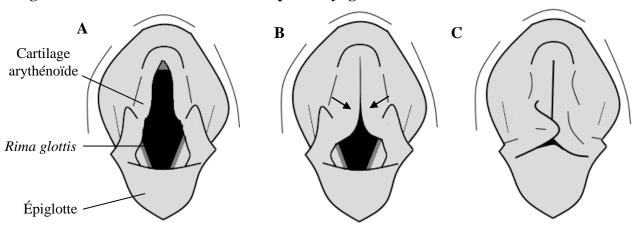
1.3. Hypoplasie trachéale

Il s'agit d'un sous-développement de la trachée qui rend son calibre anormalement petit. Elle n'est pas réellement considérée comme une composante du SORB en tant que telle mais il faut tout de même la prendre en compte car elle peut accentuer les troubles respiratoires chez certaines races, notamment les Bouledogues Anglais ou Français (Coyne et Fingland, 1992; Lodato et Hedlund, 2012a) mais aussi les Boston Terrier (Coyne et Fingland, 1992).

1.4. Macroglossie

La langue prend proportionnellement trop de place dans la cavité buccale de l'animal et peut gêner l'entrée de l'air dans les voies respiratoires. Elle n'est pas non plus considérée comme une composante du SORB d'une façon générale et n'est, à ce titre, pas toujours recherchée dans les études cliniques. Poncet *et al.* (2006) soulignent toutefois son existence chez les races concernées et l'importance d'en tenir compte, au vu de l'obstruction pharyngée qui en résulte.

2. Malformations secondaires


2.1. Éversion des ventricules laryngés

Les ventricules laryngés sont des structures souples et creuses situées à l'entrée du larynx, crânialement aux cordes vocales. Lors d'augmentation de pression négative, ils sont déformés et retournés vers l'entrée du larynx. Ils peuvent aussi se retrouver irrités et œdématiés. Tout ceci diminue l'ouverture de la *rima glottis*. Il s'agit du stade I du collapsus laryngé (Monnet, 2003).

2.2. Collapsus laryngé

Dans le cadre du SORB, ce terme regroupe les stades II et III du collapsus laryngé représentés dans la figure 1. Le stade II correspond à la déviation médiale des processus corniculés des cartilages arythénoïdes (figure 1.B). Le stade III correspond à un affaissement complet du larynx avec fermeture de la *rima glottis* (figure 1.C) (Leonard, 1960).

Figure 1. Les différents stades du collapsus laryngé

A. Larynx normal. B. Stade II du collapsus laryngé. C. Stade III du collapsus laryngé

2.3. Collapsus trachéal et/ou bronchique

Il s'agit d'une réduction du calibre de la trachée et/ou des bronches par un affaissement secondaire à un affaiblissement des cartilages constituant ces structures. Un grading existe pour chaque portion de l'arbre respiratoire affectée et dépend du degré de réduction de son diamètre (Tangner et Hobson, 1982; Bottero *et al.*, 2013). Ces affections seront détaillées d'avantage dans le paragraphe consacré au collapsus trachéobronchique (primaire) du chien.

2.4. Lésions inflammatoires du tractus respiratoire

Dans l'évolution du syndrome, des lésions inflammatoires des voies respiratoires se développent. La muqueuse est particulièrement sensible et peut présenter des signes tels qu'une hyperplasie, une hyperémie, des granulomes inflammatoires, etc. Ces lésions sont souvent accompagnées d'une production augmentée de mucus (Lopez, 2012).

B. Étiopathogénie

Lors du développement embryonnaire, les races brachycéphales présentent une ankylose précoce du cartilage de la base du crâne, limitant sa croissance en longueur (Lodato et Hedlund, 2012a). Le crâne est donc plus court mais les tissus mous qu'il contient continuent de se développer, prenant proportionnellement plus de place que chez les chiens dolichocéphales et mésocéphales.

Il en résulte les malformations primaires évoquées précédemment d'où démarre un cercle vicieux : elles provoquent une augmentation de la résistance du passage de l'air au travers des voies respiratoires (par rétrécissement de la lumière) elle-même à l'origine de turbulences importantes du flux d'air et d'une augmentation des efforts inspiratoires. Cette dernière engendre une augmentation de la pression négative dans les voies respiratoires. Tout ceci concourt à une inflammation des muqueuses et à la déformation des structures les plus fragiles (éversion des ventricules laryngés, collapsus laryngé, collapsus trachéal, éversion des amygdales, ...) (Lodato et Hedlund, 2012a).

Par ailleurs, l'excès de pression négative thoracique entraine souvent des troubles digestifs (reflux gastro-œsophagiens, œsophagite, ...). Poncet *et al.* (2005) ont retrouvé des lésions digestives à l'endoscopie chez 97 % des chiens qu'ils ont examinés pour un SORB.

De plus, les troubles digestifs peuvent être majorés par une autre malformation existante chez certaines races brachycéphales (bien que non reliée au SORB *stricto sensu*), notamment le Bouledogue Français : la sténose du pylore qui est retrouvée dans 10 à 29 % des cas (Lecoindre et Richard, 2004 ; Poncet *et al.*, 2005 ; Poncet *et al.*, 2006).

Le tableau 1 résume les principales malformations respiratoires, primaires et secondaires, rencontrées chez les animaux atteints de SORB et leurs fréquences respectives d'après les études cliniques les plus récentes. On note que certaines autres malformations ne figurant pas dans le tableau sont à considérer :

- L'hypoplasie trachéale, dépendante de la race (Bouledogue Anglais et Français, Boston Terrier). A titre indicatif, cette malformation est retrouvée dans 17 à 64 % des cas de SORB dans les études évoquées ci-dessus ;
- Le collapsus trachéobronchique qui n'est pas souvent décrit dans le cadre de SORB car peu recherché : l'étude prospective de De Lorenzi *et al.* (2009) a mis en évidence des anomalies bronchiques chez 88 % des chiens examinés par endoscopie et un collapsus trachéal dans un cas sur 40 seulement (2,5 %);
- La macroglossie, présentant un diagnostic subjectif et souvent difficile à moins que l'anomalie soit marquée. Seule l'étude de Poncet *et al.* (2006) rapporte une fréquence de cette malformation, qu'ils ont estimée à environ 5 % des cas ;
- Les lésions inflammatoires (des amygdales, des choanes, ...), rarement rapportées dans la littérature bien que souvent rencontrées en pratique.

Tableau 1. Principales malformations du SORB et leurs fréquences

	EVP	SN	EVL	CL*
Ducarouge, 2002 (n = 27)	93 %	78 %	89 %	85 %
Lecoindre et Richard, 2004 (n = 30)	100 %	70 %	77 %	37 %
Poncet et al., 2005 (n = 73)	96 %	85 %	55 %	70 %
Poncet et al., 2006 (n = 51)	100 %	85 %	54 %	64 %
Torrez et Hunt, 2006 (n = 73)	86 %	43 %	64 %	53 %
Riecks et al., 2007 (n = 62)	87 %	58 %	58 %	8 %
Homo, 2008 (n = 28)	93 %	96 %	86 %	61 %
De Lorenzi et al., 2009 (n = 40)	100 %	100 %	30 %	67 %
Fasanella <i>et al.</i> , 2010 (n = 90)	94 %	77 %	66 %	NR

EVP : élongation du voile du palais. SN : sténose des narines. EVL : éversion des ventricules laryngés. HT : hypoplasie trachéale. CL : collapsus laryngé (stade II ou III). NR : non renseigné dans l'étude. *stade et critères diagnostiques souvent mal précisés.

Parmi les quatre malformations principales (figurant dans le tableau 1), l'association la plus fréquente est la présence concomitante d'une élongation du voile du palais, d'une sténose des narines et d'une éversion des ventricules laryngés. Cette association est retrouvée chez 26 à 42 % des chiens présentés pour SORB (Torrez et Hunt, 2006; Riecks *et al.*, 2007; Fasanella *et al.*, 2010). Ces derniers présentent le plus souvent entre 1 et 3 malformations (Riecks *et al.*, 2007; Fasanella *et al.*, 2010).

C. Épidémiologie

Les races les plus fréquemment touchés par le SORB en France sont :

- le Bouledogue Français (52 à 69 % des cas) ;
- le Carlin (7 à 30 % des cas);
- Le Bouledogue Anglais (4 à 18 % des cas);
- le Pékinois (environ 3 % des cas);
- le Boston Terrier (1 à 2 % des cas).

Les proportions présentées ci-dessus ne sont qu'indicatives, ne prenant en compte que les études Françaises de Ducarouge (2002), Lecoindre et Richard (2004), Poncet *et al.* (2005), Poncet *et al.* (2006) et Homo (2008). En effet, ces proportions varient largement d'un pays à l'autre. Elles restent toutefois les 5 races les plus citées dans toutes les études s'intéressant au SORB.

Le SORB est aussi régulièrement retrouvé chez d'autres races telles que le Cavalier King Charles spaniel ou King Charles spaniel (Ducarouge, 2002 ; Torrez et Hunt, 2006 ; Homo, 2008), le Shar Pei (Poncet *et al.*, 2005 ; Riecks *et al.*, 2007), le Boxer (Ducarouge, 2002 ; Torrez et Hunt, 2006 ; Fasanella *et al.*, 2009), le Shih Tzu (Ducarouge, 2002 ; Fasanella *et al.*, 2010). Cette liste n'étant pas exhaustive, d'autres races peuvent être touchées par le SORB mais de façon très sporadique.

En moyenne, les chiens atteints de SORB ont entre 2 et 3 ans au moment du diagnostic. Certains auteurs ont toutefois déterminé que la majorité des animaux étaient jeunes adultes au moment du diagnostic avec 60 à 78 % des chiens recensés âgés de moins de 3 ans (Ducarouge, 2002; De Lorenzi *et al.*, 2009; Fasanella *et al.*, 2010). L'étude de Homo (2008) a quant à elle regroupé 75 % de chiens de moins de 4 ans.

Il est intéressant de constater que dans toutes les études sauf celle de Torrez *et al.* (2006), la majorité des chiens examinés sont des mâles avec souvent une surreprésentation significative (64 à 73 %). La stérilisation, quant à elle, ne semble pas avoir d'influence sur la maladie.

D. Signalement et signes cliniques

Le SORB est une maladie évolutive. Certaines malformations et donc certains signes cliniques sont présents dès la naissance et tendent à s'aggraver au cours de la vie de l'animal (Trappler et Moore, 2011a). Leur durée d'évolution dépend donc souvent de la prise de conscience de la maladie du chien par son propriétaire, comme l'explique l'étude de Packer *et al.* (2012).

Il faut également prendre en compte que de nombreux facteurs peuvent aggraver ces signes notamment la chaleur, l'humidité, l'excitation, l'exercice ou encore le stress (Lodato et Hedlund, 2012a).

1. Signes cliniques fréquents

Les signes les plus fréquents lors de SORB sont, à divers degrés de gravité (Torrez et Hunt, 2006 ; Riecks *et al.*, 2007 ; Homo, 2008 ; Fasanella, 2010) :

- Le stertor (ronflements): 60 à 70 % des cas;
- La dyspnée (le plus souvent inspiratoire) : 30 à 60 % des cas ;
- Les troubles digestifs (vomissements et/ou régurgitations) : 25 à 50 % des cas.

Il est toutefois important de noter que si la grande majorité des chiens atteints de SORB présentent des signes respiratoires, certains ne présentent que des troubles digestifs : c'était le cas de 2 chiens sur les 28 (7 %) de l'étude d'Homo (2008).

2. Autres signes cliniques

D'autres signes cliniques peuvent survenir, souvent liés au degré d'évolution des malformations secondaires (Torrez et Hunt, 2006 ; Riecks *et al.*, 2007 ; Homo, 2008 ; Fasanella, 2010) :

- Intolérance à l'effort : dans 20 à 50 % des cas ;
- Toux : environ 33 % des cas ;
- Syncopes : dans 5 à 15 % des cas ;
- Cyanose des muqueuses (au repos ou à l'effort) : dans 5 à 15 % des cas ;
- Hyperthermie dans 5 à 10 % des cas.

3. Complications

Les principales complications du SORB sont à connaître afin de pouvoir les appréhender. Certaines peuvent même représenter des urgences vitales :

- La bronchopneumonie par fausse déglutition. En effet, les vomissements ou régurgitations récurrents peuvent favoriser le développement de cette maladie (Dear, 2014). De plus, et sans que la relation de cause à effet n'ait été réellement établie, certaines races prédisposées au SORB semblent également prédisposées aux fausses déglutitions (Dear, 2014);
- Un syndrome de détresse respiratoire aiguë (SDRA) secondaire à une bronchopneumonie ou encore à une obstruction complète des voies respiratoires (inflammation, collapsus trachéobronchique, collapsus laryngé, etc.) (Lodato et Hedlund, 2012a). Ce SDRA peut contribuer à l'apparition d'un œdème pulmonaire non cardiogénique (Cohn, 2010b; Trappler et Moore, 2011a; Hawkins, 2013b);
- Un coup de chaleur. En effet, les races brachycéphales dissipent moins facilement la chaleur que les autres chiens de par leur peau souvent épaisse et leur capacité ventilatoire diminuée (Hemmelgarn et Gannon, 2013a);
- Bien que peu rapportée, une cardiopathie droite souvent consécutive à une hypertension artérielle pulmonaire (HTAP) peut accompagner le SORB. Elle est probablement secondaire à l'hypoxemié chronique.

Certaines de ces complications accompagnent un stade avancé de la maladie et peuvent mettre en jeu la vie de l'animal c'est pourquoi il faut les garder à l'esprit et savoir identifier animaux à risque afin de mieux les appréhender (Trappler et Moore, 2011a; Lodato et Hedlund, 2012a).

Il semblerait enfin que les races brachycéphales présentent un risque de développer des chémodectomes (Hayes, 1975; Dean et Strafuss, 1975; Phan *et al.*, 2013). Cependant, cette tumeur reste rare et aucune relation de cause à effet n'a encore été clairement établie. Les hypothèses émises sont qu'une hypoxie chronique provoque une hyperplasie des chémorécepteurs du sinus carotidien, favorisant leur tumorisation (Phan *et al.*, 2013).

E. Démarche diagnostique

Le diagnostic de SORB est aisé à établir. Il faut cependant déterminer quelles composantes et éventuelles complications sont présentes ainsi que leur degré de gravité afin d'adapter le traitement individuellement.

Cette démarche doit être envisagée chez tous les chiens brachycéphales, quel que soit le motif de consultation. En effet, un diagnostic et donc une prise en charge précoces sont profitables car ils permettent d'interrompre l'évolution de la maladie en « brisant » le cercle vicieux, minimisant considérablement le risque de développement de malformations secondaires (Lodato et Hedlund, 2012a).

1. Examen clinique

Il permet tout d'abord d'évaluer l'ouverture des narines et le degré de déviation des cartilages dorsolatéraux. La sténose des narines est donc facile à diagnostiquer (Lodato et Hedlund, 2012a). On peut également apprécier la courbe respiratoire : on retrouve une dyspnée inspiratoire souvent accompagnée d'un stertor et parfois associée à une dyspnée expiratoire (Trappler et Moore, 2011a). Une hyperthermie est possible mais elle est peu fréquente et doit donc laisser envisager d'autres causes (une bronchopneumonie par fausse déglutition par exemple).

L'auscultation cardio-pulmonaire est souvent rendue difficile par des bruits référés du haut appareil respiratoire. On peut toutefois retrouver une tachycardie, une polypnée (Lodato et Hedlund, 2012a). En cas d'HTAP, on peut retrouver un souffle systolique apexien droit ou un dédoublement du deuxième bruit cardiaque (Campbell, 2007; Kellihan, 2010).

2. Diagnostic différentiel

Bien que le diagnostic de SORB fasse généralement peu de doutes, d'autres maladies obstructives des voies respiratoires hautes doivent être envisagées. Par exemple : les affections inflammatoires ou tumorales du larynx et du nasopharynx, la paralysie laryngée, un corps étranger, etc. (Parnell, 2010).

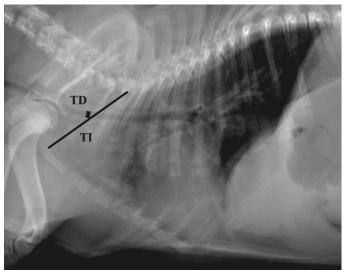
3. Examens complémentaires

3.1. Examens de routine

3.1.1. Analyses sanguines classiques

En l'absence de maladie concomitante, les analyses sanguines classiques (biochimique et hématologique) sont sans anomalie. Elles sont donc peu utiles dans le diagnostic en tant que tel mais sont toutefois recommandées comme bilan pré-anesthésique.

3.1.2. Radiographies thoraciques et cervicales


Elles peuvent tout d'abord révéler la présence d'éventuelles autres maladies représentant un risque anesthésique supplémentaire telles qu'un œdème pulmonaire (qu'il soit cardiogénique ou non) ou encore une bronchopneumonie (Lodato et Hedlund, 2012a). Si elles sont présentes, ces affections doivent être traitées avant d'envisager une anesthésie.

Elles sont également intéressantes pour évaluer le diamètre trachéal, principalement chez les races à risque d'hypoplasie (Bouledogue Anglais principalement mais aussi Bouledogue Français et Boston Terrier). La figure 2 montre comment diagnostiquer une hypoplasie trachéale à partir des vues latéro-latérales. On mesure :

- TI : la taille de l'entrée thoracique entre le bord ventral de la vertèbre T1 et la pointe du manubrium :
- TD : le diamètre trachéal à l'endroit où l'axe de mesure de TI coupe la trachée.

On calcule ensuite le rapport TD/TI. Hayward *et al.* (2008) décrivent qu'en deçà d'un rapport de 0,21, la trachée est considérée comme hypoplasique. Chez les races brachycéphales, l'hypoplasie trachéale est généralement responsable de signes cliniques si le rapport est inférieur à 0,11 chez les Bouledogues et 0,16 chez les autres races brachycéphales.

Figure 2. Diagnostic radiographique de l'hypoplasie trachéale

Crédit : Unité d'imagerie médicale, CHUVA

Deux études ont montré que la présence d'une hypoplasie trachéale ne semblait pas avoir d'influence sur le pronostic (Poncet *et al.*, 2005; Riecks *et al.*, 2007). Elle doit toutefois être recherchée avant une anesthésie car elle conditionne le diamètre de la sonde trachéale à utiliser.

Stadler *et al.* (2011) ont étudié les radiographies cervicales de 9 chiens brachycéphales présentant des maladies pharyngolaryngées (élongation/épaississement du voile du palais, éversion des ventricules laryngés, collapsus laryngé ou paralysie laryngée) ultérieurement confirmées par d'autres outils diagnostiques. Ils ont trouvé des anomalies dans tous les cas avec soit une opacification aérique dans l'aire de projection des ventricules laryngés lors de paralysie laryngée, soit une opacification tissulaire marquée dans tous les autres cas. Bien que ces images ne soient pas spécifiques, la réalisation de clichés de la région cervicale semble intéressante pour différencier une atteinte pharyngolaryngée liée au SORB d'une paralysée laryngée.

3.1.3. Examen de la cavité buccale et du larynx sous sédation

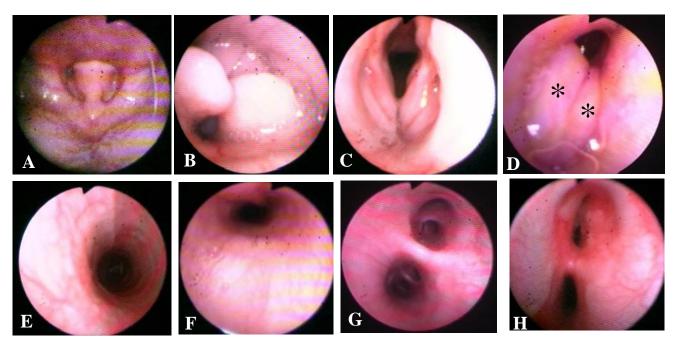
C'est une alternative à l'endoscopie lorsque cette dernière n'est pas disponible. Une légère anesthésie peut suffire à maintenir la bouche grande ouverte. On peut alors évaluer le voile du palais et le larynx (éversion des ventricules laryngés, collapsus, ...) à l'aide d'un simple laryngoscope (Trappler et Moore, 2011a). Toutefois, elle ne permet pas de diagnostiquer d'éventuelles affections nasopharyngées, trachéales et/ou bronchiques associées (Homo, 2008). Cet examen doit idéalement être réalisé juste avant la chirurgie afin de profiter du même épisode anesthésique (Trappler et Moore, 2011a).

3.2. Examens spécialisés

3.2.1. Analyse des gaz du sang

Lorsqu'il est possible de les analyser, les gaz du sang permettent de déterminer le besoin préanesthésique en oxygène du patient (Lodato et Hedlund, 2012a). En effet, lors d'une étude de Hoareau *et al.* (2012), les chiens brachycéphales testés présentaient, en moyenne, des valeurs de PaO₂ significativement plus basses et de PaCO₂ significativement plus élevées que des chiens sains. Certains d'entre eux étaient présentés en hypoxémie, même en dehors d'une situation d'urgence (Hoareau et al., 2012).

Les principaux inconvénients résident dans la difficulté du prélèvement artériel sur un animal vigile, les conditions pré-analytiques et la moindre disponibilité des appareils de mesures en pratique courante.


3.2.2. Endoscopie

C'est l'examen complémentaire de choix pour le diagnostic de SORB (Homo, 2008; Lodato et Hedlund, 2012a). Son principal inconvénient est qu'il se déroule sous anesthésie générale chez des animaux présentant un risque anesthésique accru (Mercurio, 2011). La phase pré-anesthésique (examen clinique, mesures prophylactiques) est de ce fait cruciale et une pré-oxygénation est souvent bénéfique. Par ailleurs, comme pour l'examen de la cavité buccale sous sédation, l'idéal est de la réaliser juste avant la chirurgie afin de profiter du même épisode anesthésique (Trappler et Moore, 2011a; Lodato et Hedlund, 2012a).

L'endoscopie respiratoire permet de visualiser le larynx, la trachée, les bronches mais aussi les cavités nasales par voie rétrograde. Cela permet de diagnostiquer l'élongation du voile du palais (Figure 3.A.), l'éversion des ventricules laryngés (Figure 3.D.), le collapsus laryngé (Figure 3.B.), le collapsus trachéal, le collapsus bronchique (Figure 3.H.), les lésions inflammatoires, le degré de l'hypoplasie trachéale (Figure 3.F.) et enfin d'apprécier le degré d'obstruction du nasopharynx (Homo, 2008; De Lorenzi *et al.*, 2009).

L'endoscopie digestive peut également s'avérer intéressante. En effet, même si la quasi-totalité des animaux atteints de SORB semblent présenter des lésions œsophagiennes, gastriques ou duodénales (parfois de façon asymptomatique), elle permet de diagnostiquer une sténose du pylore chez certains d'entre eux. Cette sténose du pylore peut nécessiter un traitement chirurgical en cas de persistance des signes digestifs malgré la correction du SORB (Poncet *et al.*, 2005 ; Homo, 2008).

Figure 3. Images endoscopiques des composantes anatomiques du SORB

A. Elongation du voile du palais. **B.** Collapsus laryngé marqué. **C.** Entrée du larynx sain. **D.** Eversion des ventricules laryngés (*). **E.** Trachée saine. **F.** Hypoplasie trachéale. **G.** Bronches saines. **H.** Collapsus bronchique. - *Crédit : Unité de médecine interne, CHUVA*

3.2.3. Examen tomodensitométrique

Peu d'études se sont intéressées à l'utilité de l'examen tomodensitométrique dans le diagnostic du SORB. Stadler *et al.* (2011) ont analysé des images tomodensitométriques et leurs reconstitutions en 3D chez des chiens présentant diverses maladies obstructives des voies respiratoires hautes dont neuf atteints de SORB. Ils ont utilisé un dispositif de contention ingénieux permettant de s'affranchir d'une anesthésie générale : le Vet MouseTrapTM, une boite cylindrique en plexiglass ne créant pas d'artefact lors de la prise des images (Oliveira *et al.*, 2011a).

Bien que la majorité des chiens étudiés semblent avoir bien toléré la procédure, deux d'entre eux ont nécessité une simple sédation pour limiter le stress engendré (Stadler *et al.*, 2011).

Les résultats obtenus sont très encourageants : les images en 3D reproduisent presque à l'identique ce que l'on peut voir lors d'une endoscopie (Stadler *et al.*, 2011). Cette méthode permet donc un diagnostic non-invasif des principales composantes du SORB (élongation du voile du palais, éversion des ventricules laryngés, hypoplasie trachéale, collapsus laryngé et collapsus trachéobronchique) sur des animaux vigiles mais elle doit être perfectionnée. En effet, l'une des limites de l'étude était l'incapacité de déterminer la phase respiratoire au moment de la prise des clichés, ce qui a parfois nécessité la réitération de l'examen à une ou plusieurs reprises. De plus, les chiens avaient la possibilité de bouger la tête ce qui pouvait créer des artéfacts préjudiciables lors de l'examen de la zone pharyngolaryngée (Stadler *et al.*, 2011).

Dans une autre étude, prospective, s'intéressant à 26 chiens brachycéphales, Grand et Bureau (2011) ont également montré que l'examen tomodensitométrique pouvait permettre d'évaluer de façon précise l'élongation et surtout épaississement du voile du palais.

3.3. Examens réservés au milieu hospitalier universitaire

3.3.1. Généralités

Les outils diagnostiques utilisés à l'heure actuelle sont fiables et présentent relativement peu de risques dans le cadre de SORB c'est pourquoi peu d'auteurs cherchent à en développer de nouveaux. Cependant, pour beaucoup de maladies respiratoires, la pléthysmographie barométrique du corps entier suscite un intérêt grandissant (Bernaerts *et al.*, 2010; Balakrishnan et King, 2014).

3.3.2. Pléthysmographie barométrique du corps entier (PBCE)

L'évaluation de la fonction pulmonaire est le « gold standard » du diagnostic et du suivi des maladies respiratoires en médecine humaine (Talavera *et al.*, 2006; Balakrishnan et King, 2014). Elle est rendue possible par différentes méthodes souvent difficiles à appliquer en médecine vétérinaire pour diverses raisons (nécessité d'efforts volontaires, de coopération du patient, etc.) (Talavera *et al.*, 2006; Balakrishnan et King, 2014).

La PBCE est dérivée de la médecine humaine et présente l'intérêt d'évaluer la fonction pulmonaire de manière répétable, non-invasive et non-contraignante pour un animal vigile ou sédaté (Talavera et al., 2006). Pour ce faire, on place le chien dans une chambre en plexiglass close alimentée par un flux d'oxygène constant (10 L/mn) permettant d'éviter l'accumulation de dioxyde de carbone (Talavera et al., 2006). Des mesures de pressions sont effectuées dans la chambre en suivant le principe que l'air expiré, étant réchauffé et humidifié, augmente la pression totale de la chambre et qu'à l'inverse, l'air inspiré la diminue (Balakrishnan et King, 2014). Les artéfacts causés par les mouvements, les vocalises et le reniflement de l'animal peuvent être aisément éliminés par l'ordinateur intégrant les mesures (Talavera et al., 2006; Bernaerts et al., 2010).

Bernaerts *et al.* (2010) ont réalisé cet examen sur 11 chiens atteints de SORB préalablement sédatés grâce à un protocole à base d'acépromazine et de buprénorphine, ne modifiant pas les résultats obtenus lors de PBCE (Talavera *et al.*, 2006). En comparant leurs résultats à ceux obtenus chez des

chiens sains par Talavera *et al.* (2006), ils ont montré que le SORB provoquait une augmentation significative de certains paramètres tels que le ratio PEF/poids, le ratio PEF/PIF, la Penh et la Pause ainsi qu'une diminution significative du ratio Te/Ti, le ratio PIF/poids et le temps de relâchement. Le PEF (peak expiratory flow) et PIF (peak inspiratory flow), mesurés en millilitres par seconde, correspondent respectivement aux débits maximaux atteint lors de l'expiration et l'inspiration (Talavera *et al.*, 2006). L'augmentation du rapport PEF/PIF reflète le caractère dynamique de l'obstruction extrathoracique caractéristique du SORB causée par l'élongation du voile du palais et l'éversion des ventricules laryngés (Bernaerts *et al.*, 2010).

Te et Ti, mesurés en secondes, correspondent respectivement aux temps expiratoire et inspiratoire (Talavera *et al.*, 2006). La diminution du rapport Te/Ti caractérise donc la dyspnée inspiratoire causée par le SORB (Bernaerts *et al.*, 2010).

La Penh (enhanced pause), sans unité, est un index calculé utilisé pour évaluer les modifications du flux d'air lorsqu'un animal respire. En d'autres termes, elle caractérise l'adaptation respiratoire d'un animal à une situation physiologique ou pathologique. Son principal intérêt en médecine vétérinaire est qu'elle augmente lors de bronchoconstriction, faisant d'elle un bon marqueur de la bronchoréactivité (Talavera *et al.*, 2006). Hirt *et al.* (2008) n'ont pas décelé d'augmentation de la Penh chez 6 chiens sains pour lesquels une obstruction des voies respiratoires hautes a été créée artificiellement. Cependant, ils ont émis l'hypothèse que le degré d'obstruction provoqué pouvait être trop faible pour correspondre à certaines situations cliniques qui engendreraient une augmentation de la Penh. Cela expliquerait les résultats obtenus par Bernaerts *et al.* (2010) et ferait de la mesure de la Penh un examen peu sensible pour la détection des maladies respiratoires obstructives (Hirt *et al.*, 2008; Bernaerts *et al.*, 2010).

F. Traitement

1. Traitement hygiénique

La prise en charge du SORB passe tout d'abord par des mesures hygiéniques. Celles-ci sont nécessaires même après le traitement chirurgical pour maintenir une bonne qualité de vie de l'animal, surtout chez les chiens présentant une hypoplasie trachéale pour laquelle aucun traitement n'est possible (Lodato et Hedlund, 2012b).

La gestion du poids est primordiale (Trappler et Moore, 2011a; Lodato et Hedlund, 2012b). En effet, une étude récente de Fonfara *et al.* (2007) a montré que l'obésité pouvait représenter à elle seule un facteur de risque du développement ou de l'exacerbation d'une dyspnée. Ils ont en effet recensé 229 chiens présentés pour dyspnée dont 4 présentaient une obésité morbide sans autre maladie identifiée. Une autre étude de Manens *et al.* (2012) a montré que l'obésité a un impact négatif sur la fonction respiratoire (augmentation de la fréquence respiratoire, diminution du volume courant respiratoire) et la broncho-réactivité. Enfin, Manens *et al.* (2014) ont montré que la perte de poids chez des animaux en surpoids voire obèses entrainait une amélioration significative de la fonction cardiopulmonaire et plus particulièrement une augmentation de la tolérance à l'effort reflétée par une la distance parcourue lors du test de marche pendant 6 minutes (détaillé dans le paragraphe sur la bronchite chronique canine).

Les facteurs exacerbant les signes cliniques sont aussi à contrôler. On veillera ainsi à éviter la chaleur, l'humidité, le stress et l'excès d'exercice (Trappler et Moore, 2011a; Lodato et Hedlund, 2012b). Il est donc préférable que les promenades soient de courte durée, aux heures les plus fraiches de la journée (Trappler et Moore, 2011a). Enfin, comme pour tous les animaux présentant une atteinte des voies respiratoires supérieures, l'utilisation d'un harnais plutôt qu'un collier est fortement recommandée (Trappler et Moore, 2011a).

2. Traitement médical

2.1. Généralités

Il n'existe pas de traitement médical étiologique contre le SORB. Une éventuelle injection unique d'antiinflammatoire stéroïdien à action rapide tel que la dexaméthasone à la dose de 0,5 à 2 mg/kg peut soulager l'animal momentanément (Lodato et Hedlund, 2012b) mais il ne s'agit en aucun cas d'une solution à long terme.

2.2. Traitement des troubles digestifs

Les animaux présentant des troubles digestifs doivent toute de même faire l'objet de la mise en place d'un traitement symptomatique à base d'antiacides (antihistaminiques H2 ou inhibiteurs de la pompe à protons), de protecteurs de la muqueuse et éventuellement d'anti-vomitifs et prokinétiques (Trappler et Moore, 2011a). En effet, deux études d'une même équipe ont montré que les chiens atteints de SORB présentant des signes cliniques respiratoires et digestifs semblaient profiter d'un meilleur rétablissement et d'une meilleure qualité de vie après la chirurgie des voies respiratoires si celle-ci était aussitôt associée à un traitement médical des troubles digestifs (Poncet *et al*, 2005; Poncet *et al*, 2006) bien que dans certains cas, le traitement chirurgical seul permette la résolution progressive des lésions digestives (Lecoindre et Richard, 2004).

3. Traitement des complications

3.1. Bronchopneumonie par fausse déglutition

Le traitement de la bronchopneumonie par fausse déglutition varie selon la gravité de la maladie (Dear, 2014). Alors que les formes les plus graves nécessitent des soins intensifs, les formes modérées de la maladie peuvent se résoudre par une antibiothérapie simple. Celle-ci doit toutefois être conduite pendant 3 à 6 semaines et continuée au moins 1 à 2 semaines après résolution des signes cliniques et/ou radiographiques (Dear, 2014). Le choix de l'antibiotique doit idéalement se baser sur un antibiogramme ; en l'attente de ce résultat, Dear (2014) propose un traitement empirique à base de sulfate de triméthoprime à la dose de 30 mg/kg *per os* toutes les 12 heures ou de l'association amoxicilline-acide clavulanique à la dose de 13,75 mg/kg *per os* toutes les 12 heures. Les formes plus graves peuvent nécessiter une association avec une quinolone en bithérapie (Dear, 2014).

3.2. SDRA

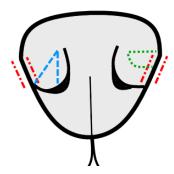
Le SDRA nécessite souvent une prise en charge d'urgence. Il est souvent profitable de pouvoir installer une voie veineuse et placer les animaux dans un environnement sec, complémenté en oxygène (Trappler et Moore, 2011a). Une sédation peut s'avérer nécessaire dans certains cas, à l'aide d'acépromazine ou de butorphanol (Lodato et Hedlund, 2012b). Enfin, lors de choc ou d'exacerbation de la réaction inflammatoire, un anti-inflammatoire stéroïdien à action rapide tel que la dexaméthasone peut être utilisé (Trappler et Moore, 2011a; Lodato et Hedlund, 2012b).

3.3. Coup de chaleur

Le coup de chaleur nécessite également un traitement d'urgence. La rapidité de la prise en charge influence d'ailleurs le pronostic (Hemmelgarn et Gannon, 2013b). Le traitement repose principalement sur un refroidissement actif (à l'aide de serviettes trempées, de pains de glace, de ventilateurs, etc.) et d'un support cardiovasculaire (Hemmelgarn et Gannon, 2013b).

4. Traitement chirurgical

Le but du traitement chirurgical est de diminuer voire supprimer les éléments obstruant les voies respiratoires afin de rétablir un flux d'air convenable (Lodato et Hedlund, 2012b). S'il est effectué tôt dans la vie de l'animal (vers l'âge de 3 à 4 mois), cela permet de réduire presque entièrement le risque d'apparition de malformations secondaires, souvent plus graves (Trappler et Moore, 2011b; Lodato et Hedlund, 2012b).


La chirurgie se fait en plusieurs étapes, selon le nombre de malformations. Elle est donc à adapter individuellement (McPhail, 2013).

4.1. Sténose des narines

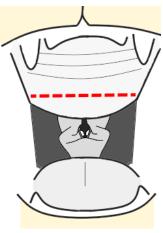
La chirurgie correctrice de la sténose des narines est appelée « rhinoplastie ». Elle peut suivre différentes techniques ; le but étant toujours d'augmenter l'ouverture des narines afin de faciliter le passage de l'air (Lodato et Hedlund, 2012b). Les trois principales techniques sont illustrées par la figure 4 : deux d'entre elles consistent en le retrait d'une portion pyramidale (par un axe horizontal ou vertical) du cartilage dorsolatéral pour ensuite suturer les bords entre eux. Une autre technique, l'alapexie, consiste en la réalisation d'une incision sur le bord latéral du cartilage dorsolatéral d'une narine, une autre incision sur la babine en regard de la première puis une suture bords à bords de ces deux plaies chirurgicales (Ellison, 2004).

Il ne semble pas y avoir de différence significative en termes de résultat (clinique et esthétique) mais l'alapexie est plus longue et un peu plus difficile que les deux autres (Ellison, 2004).

Figure 4. Schématisation de trois techniques de rhinoplastie

Tirets bleus : technique par retrait d'un morceau de cartilage dorsolatéral selon un axe vertical. Pointillés verts : technique par retrait d'un morceau de cartilage dorsolatéral selon un axe horizontal. Tirets et pointillés rouges : alapexie.

Une dernière technique, dite de Trader, existe et consiste en l'excision d'une portion du cartilage dorsolatéral pour laisser ensuite la plaie néoformée cicatriser par deuxième intention (Huck *et al.*, 2008). Cela rend cette technique plus simple et plus rapide mais également moins esthétique (Huck *et al.*, 2008; Lodato et Hedlund, 2012b). Elle a toutefois l'avantage de pouvoir être effectuée chez des animaux très jeunes dont le nez est trop petit pour envisager une autre technique de rhinoplastie (Huck *et al.*, 2008).


Les complications associées à la rhinoplastie sont peu fréquentes et plutôt bénignes. On pourra retrouver une déhiscence des sutures ou une réaction inflammatoire locale parfois marquée nécessitant la réfection des points (Mercurio, 2011).

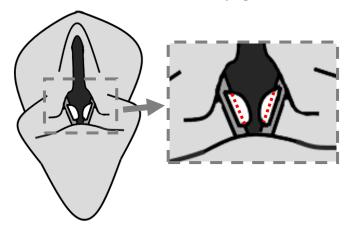
4.2. Élongation du voile du palais

La technique la plus utilisée, illustrée par la figure 5, est la palatoplastie qui consiste en le désépaississement du palais et la résection de sa partie la plus caudale au-delà de la pointe de l'épiglotte (Trappler et Moore, 2011b; Lodato et Hedlund, 2012b). La principale difficulté de cet acte est de retirer la bonne quantité de tissu. En effet, une résection insuffisante entraine une persistance de l'obstruction alors qu'un retrait excessif risque de favoriser les fausses déglutitions (Mercurio, 2011; Trappler et Moore, 2011b; Lodato et Hedlund, 2012b).

Différents instruments peuvent être utilisés notamment le bistouri classique, le bistouri électrique, la thermofusion ou le laser au CO₂ et bien que ce dernier semble faire gagner du temps, limiter les saignements et l'inflammation (Davidson *et al.*, 2001; Dunié-Mérigot *et al.*, 2010), il s'accompagne de contraintes d'utilisation. Il n'y a donc pas de réel bénéfice à utiliser l'une ou l'autre de ces techniques (Davidson *et al.*, 2001; Riecks *et al.*, 2007; Dunié-Mérigot *et al.*, 2010; Trappler et Moore, 2011b; Lodato et Hedlund, 2012b).

Figure 5. Schématisation de la palatoplastie.

Une portion du palais mou s'étend trop caudalement et risque d'obstruer la *rima glottis*. Celle-ci est reséquée. La partie restante du palais mou est également désépaissie.


Les principales complications pouvant survenir suite à la palatoplastie sont la déhiscence des sutures, des vomissements ou régurgitations, une bronchopneumonie par fausse déglutition ou encore une forte réaction inflammatoire pouvant engendrer une détresse respiratoire et conduire à la mort de l'animal (Mercurio, 2011). Ces deux dernières complications peuvent dégrader considérablement la récupération de l'animal et doivent être sérieusement surveillées.

De ce fait, une injection de dexaméthasone juste avant la chirurgie puis renouvelée pendant 1 ou 2 jours en post-opératoire peut s'avérer bénéfique (Mercurio, 2011).

4.3. Éversion des ventricules laryngés

Le retrait chirurgical des ventricules laryngés, illustré sur la figure 6, est très simple et très rapide. De plus, ces structures anatomiques n'étant que très peu vascularisés, cette étape ne nécessite pas d'hémostase ni de sutures (Lodato et Hedlund, 2012a).

Figure 6. Schématisation de l'exérèse des ventricules laryngés

Lorsqu'ils sont éversés, les ventricules font protrusion crânialement aux cordes vocales. Ils sont saisis à l'aide d'une pince forceps et retirés grâce à des ciseaux de Metzenbaum (McPhail, 2013).

4.4. Autres malformations

Le collapsus laryngé de stade II ou III ne nécessite pas d'intervention chirurgicale systématique. En effet, Torrez et Hunt (2006) ont rapporté une bonne évolution clinique suite à une chirurgie « classique » (rhinoplastie, palatoplastie et éventuellement exérèse des ventricules laryngés), même lorsqu'un collapsus laryngé a été mis en évidence. Pour les animaux ne présentant pas d'amélioration malgré tout, une latéralisation arythénoïdienne (White, 2012) ou trachéostomie permanente peuvent s'avérer nécessaires (Trappler et Moore, 2011b).

L'hypoplasie trachéale ne peut pas être corrigée chirurgicalement (Lodato et Hedlund, 2012b).

Les lésions inflammatoires régressent généralement après la correction des malformations primaires et le traitement anti-inflammatoire associé à l'intervention (Trappler et Moore, 2011b; Lodato et Hedlund, 2012b).

4.5. Gestion post-opératoire

Le taux de mortalité péri- et post-opératoire est estimé entre 0 et 4 % (Davidson *et al.*, 2001; Poncet *et al.*, 2006; Torrez et Hunt, 2006; Riecks *et al.*, 2007). Parce que le risque de complications suite à la chirurgie n'est pas négligeable et que celles-ci peuvent être graves, une hospitalisation pendant 24 à 48 heures est fortement recommandée après l'intervention (Trappler et Moore, 2011b). Il est important de ne pas proposer de nourriture à l'animal trop rapidement après la chirurgie (pendant 12 à 24 heures) pour limiter le risque de fausse déglutition (Trappler et Moore, 2011b).

G. Pronostic

Le pronostic après la chirurgie est généralement bon. Le taux global de chiens présentant une amélioration clinique franche se situe entre 88 et 94 % selon les études les plus récentes (Poncet *et al.*, 2005 ; Torrez et Hunt, 2006 ; Riecks *et al.* 2007). Il faut toutefois avertir le propriétaire que si la qualité de vie de l'animal est nettement améliorée, la disparition totale des signes cliniques est assez rare (Torrez et Hunt, 2006 ; Lodato et Hedlund, 2012b). Certains chiens peuvent ainsi présenter un stertor ou un stridor persistant ou encore garder un certain degré d'intolérance à l'effort bien que ceux-ci soient généralement moins marqués qu'avant l'intervention chirurgicale.

La présence d'une hypoplasie trachéale ou d'un collapsus laryngé avant l'acte chirurgical ne semble pas affecter le pronostic (Torrez et Hunt, 2006 ; Riecks *et al.*, 2007).

Les signes cliniques digestifs ont aussi tendance à s'estomper jusqu'à disparaître totalement après la chirurgie des voies aériennes supérieures, surtout lorsque celle-ci est couplée à un traitement médical (Poncet *et al.*, 2005).

Enfin, si les mesures hygiéniques doivent être scrupuleusement suivies dans les deux premières semaines après la chirurgie, il est recommandé de continuer à les appliquer tout au long de la vie de l'animal pour lui assurer une qualité de vie optimale (Trappler et Moore, 2011b).

II. LA BRONCHITE CHRONIQUE CANINE

La bronchite chronique est une des causes les plus fréquentes de toux chez le chien, plus particulièrement les petites races (Ettinger, 2010 ; Hawkins, 2013a). Cependant, cette manifestation clinique alarme rarement les propriétaires qui repoussent souvent les investigations jusqu'à un stade évolué de la maladie parfois associé à des lésions irréversibles (Hawkins, 2013a ; Rozanski, 2014). Encore une fois, dans le cadre de cette maladie chronique à caractère évolutif, le rôle d'information du vétérinaire est primordial.

A. Présentation de la maladie

La bronchite chronique canine (BCC) est une affection inflammatoire chronique se traduisant par une toux, souvent quotidienne, évoluant depuis au moins 2 mois (Ettinger, 2010; Hawkins, 2013a; Rozanski, 2014). Cette maladie est progressive et provoque des signes cliniques d'intensité variable pouvant aller jusqu'à une détresse respiratoire. Cette dernière met en jeu le pronostic vital de l'animal

B. Étiopathogénie

La BCC est considérée comme la conséquence d'agressions répétées des voies respiratoires (Hawkins, 2013a). Elle se caractérise par des lésions inflammatoires accompagnées d'une infiltration par des granulocytes neutrophiles (GNN) et/ou éosinophiles (GNE) (Ettinger, 2010). Ceci engendre une production de protéases, d'élastases et d'oxydants provoquant une augmentation de la perméabilité épithéliale et des dommages cellulaires eux-mêmes responsables d'une dyskinésie ciliaire secondaire souvent associée à une hypersécrétion de mucus (Ettinger, 2010). La figure 7 expose la pathogénie de la BCC. Il s'agit d'un réel cercle vicieux : l'inflammation provoque des remaniements de la paroi bronchique (principalement un épaississement) avec parfois une bronchomalacie associée. Ceci, associé à l'accumulation de mucus (par surproduction et dyskinésie ciliaire), entraine une obstruction partielle ou complète la lumière bronchique et donc une augmentation des efforts expiratoires. Le flux d'air turbulent et la toux qui en résultent aggravent l'inflammation trachéo-bronchique (Ettinger, 2010; Hawkins, 2013a).

Agressions respiratoires

Inflammation

Remaniements bronchiques

(GNN et GNE)

Surproduction de mucus

Obstruction des voies respiratoires

Toux

Figure 7. Schéma simplifié de la pathogénie de la bronchite chronique canine

C. Épidémiologie

La BCC affecte surtout les chiens de petites race d'âge moyen à avancé (Hawkins *et al.*, 2010; Ettinger, 2010; Hawkins, 2013a; Rozanski, 2014). La maladie peut toutefois toucher n'importe quelle race de chien à n'importe quel âge (Ettinger, 2010).

Il ne semble pas y avoir de prédisposition liée à la race ou au sexe de l'animal (Rozanski, 2014).

D. Signalement et signes cliniques

Même si le signalement peut être fortement évocateur de BCC, le recueil d'une anamnèse précise reste primordial face à un chien qui tousse. Il faut en effet s'intéresser aux conditions d'apparition de la toux (si celles-ci sont connues), à sa nature, à un potentiel changement de voix associé, à l'éventuelle exposition à des éléments tussigènes de l'environnement, au contact avec un autre animal (souvent jeune) malade, etc. (Hawkins, 2013a; Rozanski, 2014).

Les éléments tussigènes de l'environnement reconnus lors de BCC sont notamment : le tabagisme passif, les aérosols de l'environnement et la fumée de cheminée (Rozanski, 2014).

1. Signes cliniques fréquents

Les signes les plus fréquents lors de BCC sont (Padrid et al., 1990 ; Ettinger, 2010 ; Hawkins, 2013a) :

- Une toux chronique assez rauque, généralement productive mais pouvant également être sèche. Elle représente très souvent le motif de consultation ;
- Une intolérance à l'effort qui peut s'installer avec la progression de la maladie.

2. Autres signes cliniques

Les chiens atteints de BCC peuvent présenter d'autres signes cliniques tels qu'une insuffisance respiratoire, une cyanose ou encore des syncopes (Ettinger, 2010; Hawkins, 2013a). Ils sont souvent témoins d'une forme plus évoluée de la maladie ou de la présence de complications (Rozanski, 2014).

3. Complications

Les principales complications pouvant survenir lors de BCC sont :

- Une surinfection bactérienne par fragilisation des voies respiratoires. Elle est à envisager surtout chez des animaux présentant une exacerbation aiguë des signes cliniques (Hawkins, 2013a; Rozanski, 2014);
- Une HTAP secondaire à l'hypoxémie chronique (Johnson *et al.*, 1999 ; Hawkins, 2013a ; Rozanski, 2014) ;
- Une bronchiectasie chronique résultant de la destruction des composantes élastiques et musculaires des bronches. Il en découle une dilatation permanente des voies respiratoires qui augmente d'autant plus le risque d'obstruction et d'infection par perte totale de la capacité d'élimination du mucus et des agents pathogènes (Ettinger, 2010 ; Hawkins, 2013a) ;
- Une bronchopneumopathie obstructive par la formation de bouchons de mucus dans la lumière bronchique (Ettinger, 2010).

E. Démarche diagnostique

1. Examen clinique

Les chiens présentés pour une BCC en l'absence de maladie concomitante sont classiquement en bon état général bien que souvent en surpoids (Ettinger, 2010 ; Hawkins, 2013a ; Rozanski, 2014). La toux est facilement déclenchée par une légère palpation trachéale dans sa portion accessible la plus caudale, proche de l'entrée du thorax (Ettinger, 2010).

L'auscultation pulmonaire révèle souvent des bruits respiratoires augmentés ainsi que des bruits adventices : crépitements inspiratoires, sifflements inspiratoires ou expiratoires, parfois associés à des râles bruyants en fin d'inspiration et pendant l'expiration (Ettinger, 2010 ; Corcoran *et al.*, 2011 ; Hawkins, 2013a).

Chez les animaux atteints de BCC, la perception d'un souffle cardiaque à l'auscultation n'est pas rare. Une maladie valvulaire mitrale ou tricuspidienne concomitante pourra donner respectivement un souffle systolique apexien gauche ou droit et une HTAP pourra donner un souffle systolique apexien droit ou un dédoublement du deuxième bruit cardiaque (Campbell, 2007; Kellihan, 2010; Hawkins, 2013a).

2. Diagnostic différentiel

La BCC est considérée chez les animaux présentant une toux chronique, en l'absence d'un autre processus actif (Hawkins, 2013a). Il est donc important d'exclure toutes les autres causes de toux d'autant plus qu'elles ont souvent un traitement spécifique. Il faut également garder en tête que chez des petits chiens d'âge avancé, la BCC peut coexister avec d'autres maladies cardiorespiratoires : maladie valvulaire dégénérative, collapsus trachéal, HTAP, etc. (Hawkins, 2013a; Rozanski, 2014). Les principales maladies à considérer sont (Hawkins, 2013a; Rozanski, 2014) : une insuffisance cardiaque congestive (ICC), un collapsus trachéal, une infection pulmonaire (bactérienne, parasitaire ou fongique), un adénocarcinome bronchique, une tumeur pulmonaire (primaire ou secondaire), un épanchement pleural, une paralysie laryngée, une fibrose pulmonaire, etc.

3. Examens complémentaires

3.1. Examens de routine

3.1.1. Analyses sanguines classiques

En l'absence de maladie concomitante, les analyses sanguines classiques (biochimiques et hématologiques) sont généralement sans anomalie (Ettinger, 2010). Elles permettent toutefois d'effectuer un bilan pré-anesthésique et parfois de suspecter une maladie concomitante (par exemple, une surinfection lors de signes hématologiques d'inflammation).

3.1.2. Radiographies thoraciques

L'anomalie radiographique la plus fréquente, représentée sur la figure 8, est une opacification pulmonaire bronchique à broncho-interstitielle modérée à marquée (Ettinger, 2010; Hawkins, 2013a; Rozanski, 2014). D'autres signes évocateurs peuvent être retrouvés : une bronchiectasie et moins fréquemment une hyperinflation pulmonaire (Rozanski, 2014). Des modifications de la silhouette cardiaque sont également possibles en cas de cardiopathie coexistante ou d'HTAP (Ettinger, 2010). Cependant, tous ces signes sont peu spécifiques et des images radiographiques normales ne permettent en aucun cas d'exclure une BCC (Ettinger, 2010; Corcoran *et al.*, 2011).

Parce que les modifications pulmonaires perçues sur les clichés sont parfois difficiles à distinguer d'une opacification bronchique liée à l'âge (Hawkins, 2013a), le principal intérêt des radiographies thoraciques réside dans leur capacité à éliminer d'autres causes de toux telles que l'ICC, le collapsus trachéal, les tumeurs pulmonaires, les infections pulmonaires ou l'épanchement pleural (Hawkins, 2013a; Rozanski, 2014).

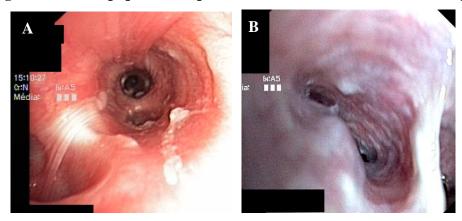
Figure 8. Radiographie thoracique d'un chien atteint de BCC

On note une opacification broncho-interstitielle marquée Crédit : Unité d'imagerie médicale, CHUVA

3.1.3 Test de marche pendant 6 minutes

Ce test consiste à mesurer la distance parcourue par le chien en marchant 6 minutes. Il est utilisé en médecine humaine comme un moyen simple et reproductible d'évaluer l'activité journalière du patient. Les normes de ce test dans l'espèce canine ne sont toutefois pas encore parfaitement définies. De plus, la distance parcourue semble être positivement corrélée à la taille du chien ce qui complique la tâche (Swimmer et Rozanski, 2011).

Swimmer et Rozanski (2011) ont évalué ce test simple chez six chiens atteints de maladies respiratoires chroniques dont trois présentant une BCC. La distance qu'ils ont parcourue en six minutes était significativement plus courte que celle de soixante-neuf chiens témoins. Ce test a l'avantage d'être simple, relativement fiable et de permettre le suivi de la réponse au traitement (Swimmer et Rozanski, 2011).

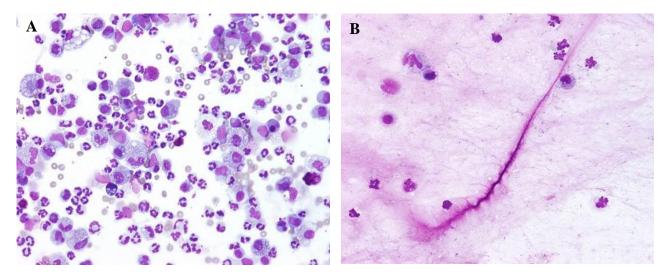

3.2. Examens spécialisés

3.2.1. Bronchoscopie et lavage broncho-alvéolaire (LBA)

Bien qu'elle nécessite une anesthésie générale, toujours délicate chez des animaux atteints de troubles respiratoires, la bronchoscopie est l'examen de référence actuel pour le diagnostic de la bronchite chronique. Les lésions retrouvées lors de BCC sont (Ettinger, 2010 ; Hawkins, 2013a ; Rozanski, 2014) :

- Des irrégularités de la muqueuse bronchique avec parfois un épaississement d'aspect granulaire (figure 9.A);
- Une hyperémie de la muqueuse (figure 9.A);
- Un collapsus bronchique partiel lors de l'expiration (figure 9.B);
- Une quantité importante de mucus (figure 9.A);
- Parfois des signes de bronchiectasie.

Figure 9. Images bronchoscopiques classiques obtenues lors de bronchite chronique canine



A. Hyperémie et irrégularités de la muqueuse associées à une quantité importante de mucus (flèches). **B.** Collapsus bronchique associé. – *Crédit : Unité de médecine interne, CHUVA*

La figure 10 présente une analyse cytologique classique du LBA d'un chien atteint de BCC. On peut alors retrouver (Ettinger, 2010 ; Rozanski, 2014) :

- Une infiltration neutrophilique prédominante (plus de 10 % de granulocytes neutrophiles, figure 10.A) parfois accompagnée d'une infiltration éosinophilique (plus de 10 % de granulocytes éosinophiles) (Andreasen, 2003). Lors de BCC seule, les neutrophiles sont non-dégénérés;
- Une quantité abondante de mucus avec parfois des spirales de Curschmann (figure 10.B), caractéristiques d'une obstruction bronchique chronique par du mucus (Andreasen, 2003) ;
- Un nombre variable de granulocytes éosinophiles (parfois important) ainsi que quelques lymphocytes, cellules à mucus, cellules ciliées et autres cellules épithéliales ;
- Un nombre variable (parfois important) de macrophages.

Figure 10. Examen cytologique après cytocentrifugation (A) et étalement direct (B) du LBA d'un animal atteint de BCC

A. Infiltrat inflammatoire neutrophilique majeur chez un chien atteint de BCC. On visualise également d'assez nombreux macrophages et quelques mastocytes (May-Grünwald Giemsa (MGG), x400).

B. Spirale de Curschmann (MGG, x400). – Crédit : Laboratoire Central de Biologie Médicale, ENVT

L'analyse du LBA permet également d'exclure des causes infectieuses (bactériennes, parasitaires ou fongiques) ou éventuellement de diagnostiquer une surinfection grâce à l'examen cytologique et à une culture bactérienne/mycologique (Hawkins, 2013a; Rozanski, 2014).

À l'examen cytologique, une infection bactérienne des voies respiratoires se traduit souvent par la présence de granulocytes neutrophiles dégénérés et parfois phagocytaires de bactéries (Johnson *et al.*, 2013); une infection parasitaire ou fongique donnera plutôt un infiltrat majoritairement éosinophilique (Andreasen, 2003).

3.2.2. Examen tomodensitométrique

Cet examen est encore peu décrit dans le diagnostic de BCC. Il se veut cependant plus précis que les radiographies thoraciques car il permet la visualisation de structures bronchiques plus petites et plus fines (Ettinger, 2010).

Une étude récente sur 16 chiens atteints de BCC a montré que l'épaisseur des parois bronchiques pouvait être évaluée en la divisant par le diamètre de l'artère pulmonaire adjacente (Szabo *et al.*, 2014). Ce ratio était significativement plus élevé chez les chiens atteints de BCC par rapport à celui de chiens indemnes de troubles respiratoires. Ainsi, un ratio supérieur ou égal à 0,6 évoque un épaississement bronchique significatif avec une sensibilité de 77 % et une spécificité de 100 % (Szabo *et al.*, 2014).

D'autres études comparant des chiens atteints de diverses maladies respiratoires sont toutefois nécessaires pour déterminer si ce ratio permet ou non de différencier la BCC d'autres maladies affectant la paroi bronchique, telles que la fibrose pulmonaire ou la bronchopneumonie éosinophilique.

3.2.3. Echocardiographie

L'examen échocardiographique est principalement justifié lors de suspicion d'HTAP secondaire à la BCC (Hawkins, 2013a). Sa détection est primordiale étant donné qu'elle peut aggraver les signes respiratoires, notamment l'intolérance à l'effort (signe le plus fréquent lors d'HTAP) et qu'un traitement spécifique existe (Campbell, 2007; Kellihan, 2010).

Une HTAP est diagnostiquée lorsque la pression artérielle pulmonaire systolique, mesurée grâce à la vitesse du reflux tricuspidien, est supérieure à 30 mmHg (Campbell, 2007; Kellihan, 2010). Elle est dite légère entre 30 et 55 mmHg, modérée entre 55 et 80 mmHg et marquée au-delà de 80 mmHg (Campbell, 2007).

Cependant, la vitesse du reflux tricuspidien est difficilement mesurable dans 30 à 80 % des cas (Campbell, 2007). Dans ces cas, on peut alors s'intéresser au reflux pulmonaire qui donne une estimation de la pression artérielle pulmonaire diastolique. Lorsque celle-ci est supérieure à 19 mmHg, on considère qu'il y a une HTAP (Kellihan, 2010).

Les signes secondaires d'HTAP à l'échocardiographie sont principalement : l'hypertrophie ventriculaire droite, la dilatation atriale droite, la dilatation du tronc pulmonaire et l'aplatissement du septum interventriculaire (Campbell, 2007 ; Kellihan, 2010). Ils doivent être recherchés.

Son dernier intérêt est d'exclure une origine cardiaque de la toux ou l'intolérance à l'effort surtout chez un animal présentant un souffle cardiaque à l'auscultation.

3.3. Examens réservés au milieu hospitalier universitaire

A l'heure actuelle, le principal objectif en recherche est de mettre au point un test permettant de différencier la BCC des autres maladies respiratoires chroniques du chien, notamment la fibrose pulmonaire et plus secondairement la bronchopneumonie éosinophilique.

3.3.1. Propeptide amino-terminal du procollagène de type III (PIIINP)

Le dosage de ce facteur ressort d'avantage comme un outil diagnostic de la fibrose pulmonaire. Il sera donc présenté plus en détail dans le paragraphe consacré à cette maladie.

Heikkilä *et al.* (2013) ont déterminé que la concentration du PIIINP dans le produit de LBA permettait de différencier la BCC de la fibrose pulmonaire avec une sensibilité de 65 % et une spécificité de 95 % pour une valeur seuil de 0,1 µg/L. Ce test semble donc très intéressant lors d'une forte suspicion de fibrose pulmonaire mais il ne peut malheureusement pas être utilisé pour l'exclure en raison de sa faible sensibilité.

3.3.2. Endothéline-1 (ET1)

Pour les mêmes raisons que le dosage du PIIINP, ce dosage sera aussi détaillé dans le paragraphe sur la fibrose pulmonaire.

Krafft *et al.* (2011) ont déterminé que contrairement au PIINP, un dosage sérique en endothéline-1 permettait de différencier BCC et fibrose pulmonaire avec cette fois une sensibilité de 100 % et une spécificité de 81,2 % pour une valeur seuil de 1,8 pg/mL. Ce dosage semble donc très intéressant pour la différenciation des deux entités pathologiques mais d'autres études cliniques sont bien sûr nécessaires afin de valider ce résultat. L'ET1 a toutefois l'inconvénient d'être une protéine labile ; les conditions pré-analytiques pour son dosage sont donc handicapantes (centrifugation à froid, congélation du sérum avant l'analyse) (Krafft *et al*, 2011).

3.3.3. Pléthysmographie barométrique du corps entier (PBCE)

Cet examen est détaillé dans le paragraphe sur le SORB.

Peu de données sont disponibles concernant la PBCE chez des chiens atteints de BCC. Bolognin *et al.* (2009) ont montré qu'une réaction inflammatoire aiguë provoquée expérimentalement à l'aide de chlorure de cadmium provoquait une augmentation transitoire de la réactivité bronchique détectable à la PBCE via la Penh.

Bien que ce soit un modèle expérimental et qu'il concerne un processus aigu, ces résultats peuvent ouvrir une voie concernant l'intérêt éventuel de cet examen pour le diagnostic de la BCC.

F. Traitement

Le but du traitement est de briser le cercle vicieux (figure 7) en réduisant l'inflammation, en limitant la toux et en augmentant la tolérance à l'effort (Rozanski, 2014).

1. Traitement médical

1.1. Glucocorticoïdes

Les corticoïdes sont généralement utilisés pour diminuer l'inflammation. Ils peuvent être administrés *per os* ou par inhalation (Ettinger, 2010 ; Hawkins, 2013a ; Rozanski, 2014).

Pour la voie orale, on prescrit généralement la prednisolone à la dose initiale de 1 à 2 mg/kg par jour pour ensuite réduire la dose progressivement, lors des consultations de suivi, jusqu'à atteindre la dose minimale effective (Hawkins, 2013a; Rozanski, 2014).

Le traitement par inhalation est un moyen intéressant d'éviter l'apparition d'effets secondaires dus aux corticoïdes (Bexfield et~al., 2006 ; Rozanski, 2014). Une étude de Bexfield et~al. (2006) a étudié les effets du dipropionate de béclométasone et du propionate de fluticasone (associés ou non à des bronchodilatateurs) aux doses respectives de 250 µg deux fois par jour et 125 µg deux fois par jour chez 10 chiens atteints de BCC. Ils ont tous présenté une nette amélioration des signes cliniques allant parfois jusqu'à une disparition de la toux ; ceci avec beaucoup moins d'effets secondaires que par voie systémique. Rozanski (2014) conseille de démarrer le propionate de fluticasone à la dose de 10 à 20 µg/kg matin et soir en arrondissant à la dose par pulvérisation accessible en pharmacie.

Un dispositif adapté, présenté sur la figure 11, au chien existe pour les inhalations : AeroDawg® (Bexfield *et al.*, 2006 ; Rozanski, 2014). Le médicament est pulvérisé à travers ce dispositif préalablement raccordé à un masque directement plaqué contre le museau du chien. Il faut ensuite maintenir tout l'assemblage en place le temps que le chien effectue 5 à 10 cycles respiratoires. Cette voie d'administration est toutefois plus onéreuse que la voie orale. Le choix de la voie d'administration doit donc se faire selon la clinique (dose nécessaire, effets secondaires importants, obésité, diabète sucré, etc.) et les préférences du propriétaire (Hawkins, 2013a).

Figure 11. Photographie du dispositif AeroDawg®

Le dispositif est constitué d'une chambre d'inhalation et d'un masque (plusieurs tailles différentes) placé à l'une des extrémités. Le pulvérisateur s'assemble à l'autre extrémité.

Crédit: 1800PetMeds.com

Les principaux effets secondaires des corticoïdes sont la prise de poids, la polyphagie, la polyuropolydypsie, le halètement ou encore des risques de thrombo-embolies pulmonaires (Cohn, 2010a).

1.2. Bronchodilatateurs

L'utilisation de bronchodilatateurs n'a pas prouvé de réelle efficacité dans le cadre de la BCC (Rozanski, 2014). Selon certains auteurs, la théophylline pourrait toutefois être bénéfique. Elle possède des avantages par rapport à d'autres bronchodilatateurs tels que la possibilité de doser sa concentration sanguine et sa disponibilité sous forme à action longue durée. On peut ainsi l'administrer *per os* deux fois par jour à la dose de 10 mg/kg. Par ailleurs, elle potentialiserait l'action des corticoïdes et améliorerait la clairance mucociliaire (Hawkins, 2013a; Rozanski, 2014). Les effets secondaires de la théophylline comprennent des troubles digestifs, des arythmies cardiaques, une agitation et plus rarement des crises convulsives (Anderson-Wessberg, 2010; Hawkins, 2013a).

D'autres bronchodilatateurs sympathomimétiques tels que la terbutaline ou l'albutérol peuvent être utilisés à des doses respectives de 1,25 à 5 mg par chien deux à trois fois par jour et 20 à 50 µg/kg deux à trois fois par jour en commençant par des doses faibles (Hawkins, 2013a). Ces médicaments présentent moins d'effets secondaires cardiaques mais peuvent toutefois causer de l'agitation, des tremblements ou une hypotension (Anderson-Wessberg, 2010 ; Hawkins, 2013a).

1.3. Antitussifs

Leur utilisation lors de BCC est controversée notamment par le fait que la maladie est souvent associée à une diminution de la clairance muco-ciliaire s'exprimant notamment par une toux productive (Hawkins, 2013a). Ils peuvent toutefois s'avérer utiles si cette dernière s'avère difficile à supporter pour le chien et pour les propriétaires (Hawkins, 2013a; Rozanski, 2014). L'hydrocodone semble être le médicament antitussif plus efficace mais beaucoup d'autres principes actifs existent (Anderson-Wessberg, 2010; Hawkins, 2013a; Rozanski, 2014).

2. Mesures hygiéniques

Elles sont primordiales et contribuent souvent à elles seules à une diminution significative de la toux (Rozanski, 2014). Le but étant de supprimer tout élément pouvant déclencher une crise de toux ou une aggravation intrinsèque des signes respiratoires (Hawkins, 2013a).

Il faut, dans la mesure du possible, éliminer toutes les causes environnementales tussigènes (Rozanski, 2014) : ne pas fumer à l'intérieur de la maison et limiter l'exposition à tout type d'aérosol. Éviter l'exposition à des chiots potentiellement malades (dans les parcs, les chenils, tout ça). D'autres conseils peuvent être donnés au cas par cas : nettoyer régulièrement les tapis et la moquette, confier l'animal à l'entourage en cas de travaux poussiéreux dans la maison, etc. (Hawkins, 2013a; Rozanski, 2014).

Il faut aussi essayer de motiver les propriétaires d'animaux obèses à entreprendre un régime (Hawkins, 2013a). En effet, comme évoqué dans le paragraphe sur le SORB, plusieurs études ont déjà mis en évidence l'impact négatif de l'obésité sur la fonction respiratoire et la bronchoréactivité (Manens *et al.*, 2012; Manens *et al.*, 2014). L'exercice quotidien doit ainsi être encouragé pour le maintien en forme du chien mais doit être adapté individuellement selon son degré endurance propre (Hawkins, 2013a).

L'utilisation d'un harnais plutôt qu'un collier peut être favorable (Rozanski, 2014). Cette mesure est d'autant plus justifiée si un collapsus trachéo-bronchique est également présent chez l'animal. Le maintien d'une hydratation convenable des voies respiratoires est un dernier point primordial du traitement hygiénique afin de liquéfier le mucus bronchique et de faciliter son élimination (Hawkins, 2013a). Les chiens atteints de BCC peuvent ainsi profiter de séances d'inhalations quotidiennes (à l'aide de solution saline ou d'eau bouillante) ou même être placés dans la salle de bain après avoir fait couler de l'eau chaude, lorsque la vapeur est encore présente (Hawkins, 2013a).

3. Traitement des complications

3.1. Surinfection bactérienne

En cas de surinfection, une antibiothérapie doit être mise en œuvre ; l'idéal étant de se baser sur un antibiogramme (Ettinger, 2010 ; Hawkins, 2013a ; Dear, 2014). La doxycycline peut toutefois être utilisée en première intention. Elle possède en effet un spectre intéressant contre les principales bactéries impliquées dans les infections respiratoires (Johnson *et al.*, 2013 ; Dear, 2014), en plus d'avoir une légère action anti-inflammatoire (Hawkins, 2013a ; Rozanski, 2014). Elle est classiquement utilisée *per os* à la dose de 10 mg/kg par jour en une ou deux prises quotidiennes. Le principal effet secondaire de la doxycycline est le risque de provocation de lésions œsophagiennes (inflammation, sténose) c'est pourquoi il est recommandé de faire boire ou manger l'animal directement après la prise du comprimé (Hawkins, 2013a).

Les quinolones, bien qu'intéressantes de par leur large spectre et leur bonne diffusion dans les voies respiratoires, ne doivent être réservées qu'aux cas d'infection graves (Hawkins, 2013a). Par ailleurs, elles diminuent l'élimination de la théophylline et augmentent donc le risque de toxicité de cette dernière (Hawkins, 2013a; Rozanski, 2014). Il est de ce fait préférable d'éviter l'utilisation associée de ces médicaments.

Bien que l'efficacité du traitement soit généralement perçue en 1 semaine, celui-ci doit être continué pendant 3 à 4 semaines et au moins 1 semaine après la résolution des signes cliniques et radiographiques (Hawkins, 2013a).

3.2. HTAP

L'HTAP peut être traitée grâce au citrate de sildénafil administré *per os* à la dose de 1 mg/kg toutes les 8 à 12 heures (Kellihan, 2010). Plusieurs publications ont déjà démontré l'efficacité de ce médicament chez le chien. Bien que la valeur de la pression artérielle pulmonaire ne soit pas significativement diminuée par le sildénafil (Kellum et Stepien, 2007), celui-ci permet une amélioration des signes cliniques, de la durée de survie et de la qualité de vie (d'après les propriétaires) dans presque tous les cas (Bach *et al.*, 2006 ; Kellum et Stepien, 2007). Ces résultats ont été confirmés par une étude contre placebo (Brown *et al.*, 2010).

3.3. Bronchiectasie chronique

Le traitement de la bronchiectasie est sensiblement le même que celui de la bronchite chronique. Il nécessite toutefois une antibiothérapie plus agressive et sur un plus long terme, parfois à vie (Ettinger, 2010).

G. Pronostic

L'évolution est variable d'un chien à l'autre. Il y a malheureusement certains cas où les modifications des voies respiratoires sont irréversibles, d'où l'intérêt d'une prise en charge précoce (Rozanski, 2014).

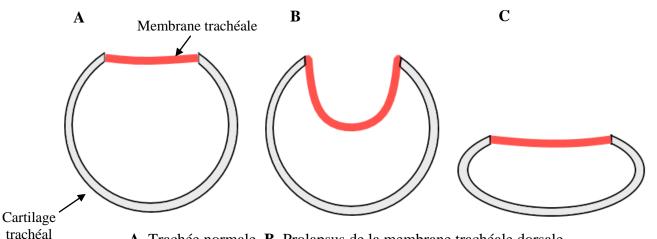
Même si la maladie est incurable, le traitement médical associé à un bon respect des mesures hygiéniques permettent d'améliorer considérablement la qualité de vie de l'animal (Ettinger, 2010; Hawkins, 2013a; Rozanski, 2014). Il est important d'informer le propriétaire que malgré cela, certains chiens continuent de présenter une toux résiduelle tout au long de leur vie (Ettinger, 2010).

Des rechutes sont également possibles et souvent contrôlées avec une adaptation du traitement adéquate (Rozanski, 2014): augmentation de la dose en corticoïdes, ajout d'un médicament (bronchodilatateur ou antitussif par exemple), prescription d'antibiotique en cas de suspicion de surinfection, etc.

L'HTAP a tendance à diminuer l'espérance de vie. D'après Kellum et Stepien (2007) qui ont étudié 22 chiens atteints d'HTAP traités au sildénafil, la durée de survie est comprise entre 8 et 734 jours. De plus, il semble y avoir une probabilité de survie de 95 % à 3 mois (pour les animaux ayant survécu après la première semaine), de 84 % à 6 mois et 73 % à 1 an après la mise en place du traitement (Kellum et Stepien, 2007).

III. LE COLLAPSUS TRACHEO-BRONCHIQUE DU CHIEN

C'est une cause fréquente de toux chez le chien. Cette maladie peut affecter la trachée et/ou les bronches. Lorsque celles-ci sont également atteintes, on parle de trachéobronchomalacie (Maggiore, 2014).


A. Définition de la maladie

Chez le chien, la trachée (figure 12.A) est constituée d'une succession de structures cartilagineuses en forme de C refermées dorsalement par des fibres musculaires lisses formant une structure appelée membrane trachéale (Hawkins, 2013a). Le collapsus trachéo-bronchique résulte d'un prolapsus de la membrane trachéale, parfois épaissie, dans la lumière trachéale (figure 12.B) et/ou d'un affaissement dorso-ventral de la trachée ou des bronches suite à l'affaiblissement du cartilage trachéal (figure 12.C). Bien que moins fréquemment rapporté, un collapsus selon l'axe latéro-latéral est également possible (Johnson et al., 1993; Buback et al., 1996).

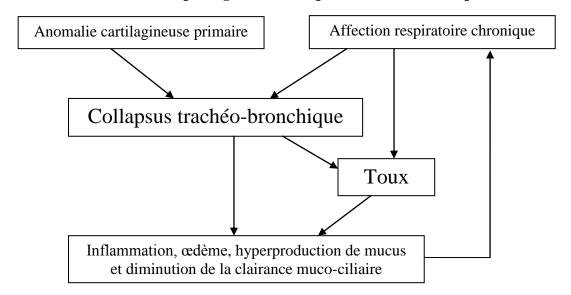
L'atteinte de la trachée est segmentaire et peut toucher la portion cervicale, thoracique ou les deux.

Il s'agit d'un processus dynamique, c'est la modification des flux d'air lors de l'inspiration (pour un collapsus cervical, aussi dit extra-thoracique) ou lors de l'expiration (pour un collapsus intrathoracique ou bronchique) qui provoque la déformation des voies aériennes.

Figure 12. Schéma des modifications anatomiques de la trachée lors de CTB

A. Trachée normale. **B.** Prolapsus de la membrane trachéale dorsale.

C. Affaissement dorso-ventral de la trachée (affaiblissement du cartilage).


B. Étiopathogénie

La cause de l'affaiblissement du cartilage est encore mal connue. Elle est probablement multifactorielle. On considère qu'elle peut être primaire (congénitale) ou secondaire (à une inflammation ou une obstruction chronique). L'épidémiologie laisse soupçonner une composante congénitale chez les petites races (Hawkins, 2013a; Maggiore, 2014).

Le mécanisme est toutefois en partie élucidé : cet affaiblissement est dû à une diminution de la concentration en glycosaminoglycanes et chondroïtine sulfate du cartilage trachéal. Ceci diminue ses capacités à retenir l'eau lui faisant perdre sa rigidité (Dallman et al., 1988).

La figure 13 présente la pathogénie du CTB : le collapsus, souvent dynamique, et la toux sont deux facteurs qui provoquent une inflammation supplémentaire, de l'œdème, une diminution de la clairance muco-ciliaire, une augmentation de la sécrétion de mucus. Il s'agit donc d'un cercle vicieux (Maggiore, 2014).

Figure 13. Schématisation de la pathogénie du collapsus trachéo-bronchique

C. Épidémiologie

Le collapsus trachéal touche principalement les petits chiens, notamment les races « miniature » et « toy » (Maggiore, 2014). Au moment du diagnostic, ces animaux ont un âge moyen à avancé (Johnson et Fales, 2001; Bauer *et al.*, 2006; Macready *et al.*, 2007; Johnson et Pollard, 2010). On note toutefois que près d'un quart d'entre eux présentent des signes cliniques depuis l'âge de 6 mois (Maggiore, 2014).

Si toutes les petites races de chiens peuvent être atteintes, les races les plus représentées dans les études sont le Yorkshire terrier, le Loulou de Poméranie, le Carlin, le Caniche, le Bichon Maltais et le Chihuahua (Johnson et Fales, 2001 ; Bauer *et al.*, 2006 ; Macready *et al.*, 2007 ; Johnson et Pollard, 2010).

Il est intéressant de remarquer que lorsque seules les bronches sont affectées (bronchomalacie), les petits et grands chiens sont atteints en proportions relativement égales (Johnson et Pollard, 2010; Bottero *et al.*, 2013).

Il ne semble pas y avoir de prédisposition liée au sexe (Maggiore, 2014).

D. Signalement et signes cliniques

Les animaux atteints de CTB expriment généralement des signes respiratoires depuis plusieurs semaines à plusieurs années (Johnson et Fales, 2001 ; Maggiore, 2014).

1. Signes cliniques fréquents

Les signes cliniques les plus fréquemment rencontrés lors de CTB sont (Johnson et Fales, 2001 ; Bauer *et al.*, 2006 ; Johnson et Pollard, 2010 ; Hawkins, 2013a ; Maggiore, 2014) :

- Une dyspnée jusqu'à dans 80 % des cas. La dyspnée peut être inspiratoire (atteinte extrathoracique) ou expiratoire (atteinte intra-thoracique et/ou bronchique);
- Une toux, souvent non productive, paroxysmique et marquée dans 65 à 85 % des cas. Elle est souvent déclenchée par l'excitation, la prise de nourriture ou de boisson, la chaleur ou encore après que le chien ait tiré brutalement sur la laisse ;
- Un stridor a été rapporté dans environ 70 % des cas dans une étude (Bauer et al., 2006).

2. Autres signes cliniques

D'autres signes cliniques peuvent être retrouvés : notamment une intolérance à l'effort, une cyanose, des syncopes et vont parfois jusqu'à une détresse respiratoire (Bauer *et al.*, 2006; Maggiore, 2014).

Ces signes sont liés à l'hypoxémie parfois marquée chez les chiens atteints de CTB ou encore à une maladie intercurrente (Hawkins, 2013a).

3. Complications

Les complications sont relativement rares lors de CTB, on retrouve toutefois :

- Les surinfections dues à la diminution de la clairance muco-ciliaire (Dear, 2014). Dans l'étude de Johnson et Fales (2001) portant sur 37 chiens, seulement 2 ont été diagnostiqués avec une surinfection bactérienne;
- Une HTAP, secondaire à l'hypoxémie chronique (Maggiore, 2014);
- Une bronchiectasie qui peut se développer jusqu'à dans 18 % des cas de CTB (Marolf *et al.*, 2007)

E. Démarche diagnostique

Le CTB engendre des signes cliniques similaires à de nombreuses maladies et peut même être une conséquence de l'une d'elles, c'est pourquoi une démarche diagnostique rigoureuse est nécessaire.

1. Examen clinique

Les animaux présentés pour un CTB sont souvent en bon état général et en surpoids, voire obèses (Macready *et al.*, 2007 ; Johnson et Pollard, 2010 ; Hawkins, 2013a ; Maggiore, 2014). La courbe respiratoire peut être normale. En règle générale, si l'animal est présenté en dyspnée, celle-ci est respectivement inspiratoire ou expiratoire lors de collapsus trachéal cervical ou thoracique/bronchique (Hawkins, 2013a ; Maggiore, 2014).

La palpation de la trachée provoque souvent une toux (indiquant une sensibilité trachéale non spécifique). Une palpation délicate, souvent suffisante, est recommandée car elle permet d'éviter le déclenchement d'une détresse respiratoire en cas de stimulation trop forte (Maggiore, 2014).

L'auscultation de la trachée peut révéler des sifflements à l'inspiration et l'expiration. L'auscultation pulmonaire est souvent gênée par des bruits référés du haut appareil respiratoire. Cependant, des crépitements inspiratoires et expiratoires peuvent être entendus en cas de bronchomalacie ou d'accumulation de mucus associée à une bronchite. L'auscultation cardiaque est importante aussi. En effet, un souffle cardiaque systolique apexien gauche a été retrouvé chez 17 % des animaux atteints de collapsus des voies respiratoires (Johnson et Pollard, 2010).

La palpation abdominale peut enfin révéler une hépatomégalie, souvent attribuée à l'obésité mais pouvant également refléter une affection hépatique (Bauer *et al.*, 2006).

2. Diagnostic différentiel

Il regroupe toutes les causes de toux chronique chez les petits chiens d'un âge moyen à avancé. Principalement la bronchite chronique, l'insuffisance cardiaque congestive, la bronchopneumopathie éosinophilique ou encore des causes infectieuses (bactérienne, parasitaire) ou tumorales (Hawkins, 2013a; Maggiore, 2014).

3. Examens complémentaires

3.1. Examens de routine

3.1.1. Analyses sanguines classiques

Des analyses biochimique et hématologique sont conseillées, principalement comme bilan préanesthésique. De plus, si ces examens sont souvent normaux chez les chiens atteints de CTB (Maggiore, 2014), ils peuvent être modifiés lors d'autres maladies causant de la toux (infection bactérienne, parasitaire, bronchopneumonie éosinophilique, néoplasie, etc.).

Il est aussi intéressant de noter qu'une étude de Bauer *et al.* (2006) a montré que 12 chiens sur 26 atteints de CTB présentaient une augmentation de l'activité d'au moins 2 enzymes hépatiques puis que la concentration en acides biliaires était augmentée chez 24 d'entre eux avant la prise de nourriture et chez 25 après celle-ci. Ces résultats tendent à se normaliser avec le traitement. La cause de ces anomalies biochimiques n'est pas encore bien expliquée bien que l'hypothèse la plus probable soit, comme en médecine humaine, une nécrose hépatique centrolobulaire secondaire à l'hypoxémie chronique (Bauer *et al.*, 2006).

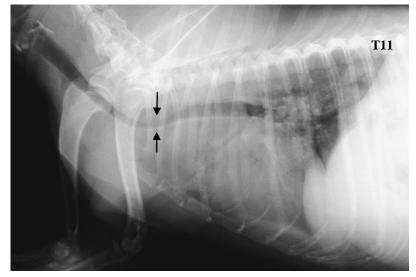
Les recherches de Dirofilariose ou d'Angiostrongylose sont aussi indiquées (Maggiore, 2014).

3.1.2. Radiographies cervicales et thoraciques

Étant donné le caractère dynamique du CTB et qu'il peut inclure la portion cervicale de la trachée, il est conseillé de réaliser plusieurs clichés à différents moments du cycle respiratoire et de les étendre à la région cervicale de l'animal (Hawkins, 2013a; Maggiore, 2014). Les collapsus extrathoraciques seront ainsi visualisés sur des clichés inspiratoires (figure 14) et les collapsus intrathoraciques sur des clichés expiratoires (figure 15).

En étudiant 62 chiens atteints de CTB, Johnson et Fales (2001) ont comparé les radiographies aux résultats obtenus par fluoroscopie pour le diagnostiquer, le localiser et le grader. Ils ont montré que si les radiographies permettaient de mettre en évidence un certain degré de collapsus dans près de 94 % des cas, elles sont très peu précises pour le localiser (en accord avec la fluoroscopie dans 50 % des cas) et encore moins pour le grader (en accord dans 15 % des cas).

De ce fait, d'autres examens d'imagerie sont nécessaires pour préciser le diagnostic. Les radiographies thoraciques permettent toutefois d'exclure d'autres causes de toux (Hawkins, 2013a).


Figure 14. Radiographie en phase inspiratoire d'un chien atteint de collapsus trachéal extra-

Collapsus extra-thoracique marqué (flèches). Cliché en phase inspiratoire (extension des champs pulmonaires au-delà de la 11^{ème} vertèbre thoracique (T11)).

Crédit : Unité d'imagerie médicale, ENVT

Figure 15. Radiographie en phase expiratoire d'un chien atteint de collapsus trachéal intra-

thoracique

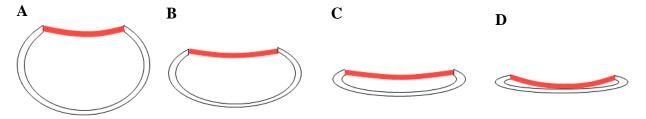
Collapsus intra-thoracique marqué (flèches). Cliché en phase expiratoire (extension des champs pulmonaires en deçà de la 11^{ème} vertèbre thoracique (T11)). – *Crédit : Unité d'imagerie médicale, ENVT*

3.2. Examens spécialisés

3.2.1. Fluoroscopie

Cet examen a l'avantage de permettre une visualisation dynamique de la trachée ce qui est très intéressant lors de CTB. Sa sensibilité et sa spécificité pour le diagnostic mais aussi la localisation et le grading sont donc bien meilleures que celles des radiographies, surtout si l'on arrive à réaliser l'examen lors d'un épisode de toux (Johnson et Fales, 2001; Hawkins, 2013a). Elle est toutefois peu disponible en pratique courante (Maggiore, 2014).

3.2.2. Bronchoscopie et LBA


La bronchoscopie est l'examen de référence pour le diagnostic du CTB. Elle nécessite toutefois une anesthésie générale qui peut la contre-indiquer pour certains chiens (Maggiore, 2014). Elle permet de grader le collapsus trachéal (tableau 2, figure 16) et bronchique (tableau 3). D'après

Elle permet de grader le collapsus trachéal (tableau 2, figure 16) et bronchique (tableau 3). D'après des études bronchoscopiques de chiens atteints de CTB, les collapsus trachéal et bronchique sont en effet associés dans 40 à 50 % des cas (Johnson et Pollard, 2010; Bottero *et al.*, 2013).

Tableau 2. Grading du collapsus trachéal d'après Tangner et Hobson (1982)

Grade	Réduction de la lumière trachéale (%)
1	25
2	50
3	75
4	90 – 100

Figure 16. Schéma des différents grades de collapsus trachéal

A. Grade 1. B. Grade 2. C. Grade 3. D. Grade 4.

Tableau 3. Grading du collapsus bronchique d'après Bottero et al. (2013)

Grade	Réduction de la lumière bronchique statique ou dynamique (%)
1	≤ 50
2	50 à 75
3	> 75

D'autres lésions, toutefois non spécifiques, peuvent être visualisées au cours de l'examen (Johnson et Pollard, 2010 ; Bottero *et al.*, 2013) :

- Des modifications structurales de la muqueuse bronchique ;
- Une hyperémie de la muqueuse ;
- Une accumulation de mucus.

L'analyse du LBA n'a pas de réel intérêt diagnostique pour le CTB mais elle permet d'exclure d'autres causes de toux telles qu'une infection bactérienne, parasitaire ou encore une bronchopneumonie éosinophilique (Johnson et Fales, 2001; Hawkins, 2013a; Maggiore, 2014).

3.2.3. Examen tomodensitométrique

L'étude de Stadler *et al.* (2011), déjà évoquée dans la partie sur le SORB, a inclus 3 chiens atteints de collapsus trachéal. Il s'avère que les reconstitutions 3D obtenues étaient semblables aux images obtenues grâce à d'autres moyens diagnostiques (fluoroscopie, bronchoscopie ou autopsie).

Le scanner semble même plus sensible que la fluoroscopie pour diagnostiquer le collapsus bronchique (Stadler *et al.*, 2011).

De plus, il permet la mesure du diamètre et de la longueur de la trachée, étape indispensable avant la pose d'un stent trachéal, de façon plus précise que les radiographies (Montgomery *et al.*, 2014). L'examen tomodensitométrique ne permet toutefois pas une étude dynamique ce qui est un

inconvénient lors de CTB. Plusieurs prises de vue peuvent donc s'avérer nécessaires. Cependant, la technique proposée par Stadler *et al.* (2011) avec le Vet MousetrapTM permet de s'affranchir d'une anesthésie générale, ce qui peut être intéressant chez certains individus gravement atteints.

F.Traitement

1. Mesures hygiéniques

Comme pour toutes les maladies respiratoires chroniques, celles-ci sont primordiales en complément du traitement médical (Hawkins, 2013a; Maggiore, 2014).

Ainsi, il faut encourager les propriétaires d'animaux obèses à leur faire perdre du poids (Manens *et al.*, 2012; Manens *et al.*, 2014) en leur donnant des objectifs réalistes : en général, on cherche à obtenir une perte d'1 à 2 % du poids corporel par semaine (Maggiore, 2014).

L'utilisation de colliers doit être proscrite, surtout lors de collapsus extra-thoracique. Les promenades en harnais sont préférables (Hawkins, 2013a).

L'environnement doit être contrôlé pour tous les facteurs exacerbants à savoir la chaleur, l'humidité, la fumée (cigarette, cheminée, etc.), les aérosols, etc. (White et Williams, 1994; Hawkins, 2013a).

Certains animaux peuvent enfin bénéficier d'une consultation en médecine du comportement ou de la prescription d'anxiolytiques si leurs crises sont déclenchées par le stress ou des aboiements excessifs (Hawkins, 2013a).

2. Traitement médical

Associé aux mesures hygiéniques, le traitement médical est souvent suffisant pour contrôler la maladie, du moins pendant un certain temps. Dans une étude de White et Williams (1994) portant sur 100 chiens, celui-ci a permis la résolution des signes cliniques pendant plus d'un an dans 71 % des cas.

2.1. Antitussifs

Ils sont utilisés pour contrôler les signes cliniques et contribuer à l'interruption du cercle vicieux (Hawkins, 2013a)

On peut prescrire différents médicaments. Les deux molécules possédant une AMM vétérinaire en France sont la pentoxyvérine et l'éthylmorphine qui sont tous les deux des antitussifs à action centrale. Il est d'usage d'employer des doses et fréquences initialement élevées pour rompre le cercle vicieux puis de les diminuer progressivement ensuite (Hawkins, 2013a; Maggiore, 2014).

Les effets secondaires des antitussifs sont en général une sédation, une constipation et le développement d'une tolérance (Maggiore, 2014).

2.2. Glucocorticoïdes

L'administration de glucocorticoïdes à dose antiinflammatoire permet également de rompre le cercle vicieux. Lors de CTB, il est suffisant de ne les donner que pendant une courte période, ce qui est préférable pour éviter la survenue d'effets indésirables (Hawkins, 2013a).

Lors de l'exacerbation des signes respiratoires, on peut ainsi prescrire de la prednisolone à la dose de 0,5 à 1 mg/kg *per os* toutes les 12 heures pendant 3 à 5 jours avant de diminuer la dose progressivement jusqu'à arrêter le traitement après 3 à 4 semaines (Hawkins, 2013a; Maggiore, 2014). Le propionate de fluticasone par voie inhalée peut aussi être utilisé à la dose de 110 µg par pulvérisation deux fois par jour (Maggiore, 2014).

2.3. Bronchodilatateurs

Les bronchodilatateurs sont surtout indiqués chez les chiens présentant une BCC associée au CTB (Hawkins, 2013a). Maggiore (2014) propose aussi leur utilisation lors de suspicion ou de confirmation bronchoscopique d'un collapsus bronchique marqué, bien que la réponse soit variable. Comme pour la BCC, le bronchodilatateur le plus pratique à utiliser est la forme à longue-action de la théophylline, à la dose de 10 mg/kg *per os* toutes les 12 heures (Maggiore, 2014).

2.4. Le stanozolol

Une étude assez récente d'Adamama-Moraitou *et al.* (2011) a étudié l'intérêt du stanozolol, un dérivé synthétique de la testostérone, dans le traitement conservateur du CTB. Le mécanisme n'est pas encore bien élucidé mais on pense que ce médicament pourrait notamment augmenter la synthèse de protéines ou de collagène dans les voies respiratoires, augmenter le taux de chondroïtine sulfate et diminuer l'inflammation (Adamama-Moraitou *et al.*, 2011).

Ils ont évalué l'effet du stanozolol administré à la dose de 0,3 mg/kg en deux prises quotidiennes pendant 75 jours (diminution progressive à partir de la fin du deuxième mois de traitement) chez un groupe de 14 chiens atteints de CTB en comparant leur score clinique et leur grade de collapsus après traitement à celui de 8 chiens ayant reçu un placebo. Une amélioration de la clinique et du grade de collapsus ont été notées chez presque tous les chiens (13 chiens sur 14 soit 93 %) avec même une disparition de celui-ci pour 8 chiens (57 %).

Bien que d'avantage d'études cliniques soient nécessaires pour confirmer cette efficacité et évaluer les éventuels effets délétères d'un tel traitement, ces résultats sont très encourageants.

2.5. Traitement des complications

Les complications rencontrées lors de CTB sont les mêmes que lors de BCC. Leurs traitements ont été vus en détail dans le paragraphe concernant cette maladie.

3. Traitement chirurgical

Le traitement chirurgical est directement influencé par la localisation du collapsus c'est pourquoi le recours à des examens d'imagerie avancée (fluoroscopie, bronchoscopie ou examen tomodensitométrique) est recommandé avant sa mise en place (Maggiore, 2014).

Il doit être réservé uniquement aux animaux dont l'insuffisance respiratoire (intolérance à l'effort, cyanose, syncope) est réfractaire au traitement médical (White et Williams, 1994). La persistance d'une toux n'est pas une indication chirurgicale.

3.1. Collapsus trachéal

D'assez nombreuses techniques sont décrites pour la correction chirurgicale du collapsus trachéal. Les deux principales restent la mise en place d'un stent intra-luminal ou de prothèses extra-luminales.

3.1.1. Stent intra-luminal

Le principe est de placer un stent par guidage fluoroscopique (Moritz *et al.*, 2004 ; Sura et Krahwinkel, 2008) ou endoscopique (Durant *et al.*, 2012) qui se déploie dans la trachée pour la maintenir ouverte.

Le diamètre et la longueur du stent doivent être préalablement choisis grâce à des mesures effectuées à partir des résultats des radiographies cervicales et thoraciques (Moritz *et al.*, 2004; Durant *et al.*, 2012; McPhail, 2013) ou idéalement de l'examen tomodensitométrique (Montgomery *et al.*, 2014).

Il doit être placé de façon à ce qu'il s'étende de 10 mm caudalement au cartilage cricoïde à 10 mm crânialement à la carenne (aux environs de la 4^{ème} côte) afin de limiter le risque d'apparition de lésions inflammatoires (irritation, granulomes) (McPhail, 2013). Ces calculs sont très importants car le stent ne peut être repositionné une fois qu'il est déployé (McPhail, 2013). La figure 17 représente une image prise par fluoroscopie après la pose d'un stent correctement placé.

Figure 17. Image par radiographique d'un stent en place

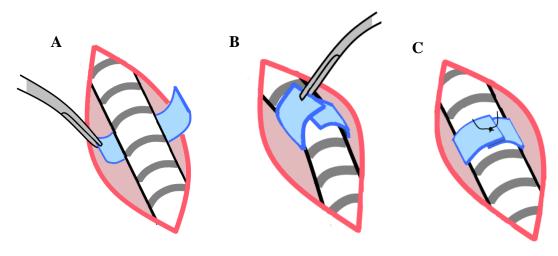
Crédit : Unité d'imagerie médicale, CHUVA

Cette technique permet une amélioration nette des signes cliniques dans 85 à 95 % des cas (Moritz *et al.*, 2004 ; Sura et Krahwinkel, 2008).

Les principales complications pouvant survenir suite au placement d'un stent intra-luminal sont (Moritz *et al.*, 2004 ; Sura et Krahwinkel, 2008, Durant *et al.*, 2012) :

- Une trachéite bactérienne dans environ 60 % des cas. Elle est traitée par une antibiothérapie sur plusieurs semaines, éventuellement associée à des inhalations de solution saline ;
- Une fracture de stent dans environ 20 à 40 % des cas, surtout lorsque le stent traverse l'entrée du thorax (site de fracture le plus fréquent). Elle est parfois sans conséquence clinique. Dans le cas contraire, le traitement est fait au cas par cas : de la repose d'un stent à la trachéostomie permanente ;
- Une granulation excessive autour du stent causant une obstruction des voies respiratoires dans environ 15 % des cas. Cette complication rétrocède généralement bien avec un traitement par des glucocorticoïdes à dose antiinflammatoire;
- La migration du stent au sein de la trachée.

3.1.2. Prothèses extra-luminales


Cette technique, présentée sur la figure 18, est plus difficile et plus invasive que la précédente car elle consiste en la mise en place de prothèses autour de la trachée qui vont lui rendre sa forme par « traction » depuis l'extérieur (Maggiore, 2014). Des précautions supplémentaires doivent être prises afin de ne pas endommager les structures adjacentes à la trachée, en particulier le nerf laryngé récurrent (Hawkins, 2013a). Ce « montage » présente toutefois l'avantage d'avoir une plus grande durabilité que le stent intra-luminal ce qui le rend plus intéressant pour traiter les jeunes chiens (Hawkins, 2013a).

Il existe un modèle de prothèses commercialisé mais elles peuvent également être fabriquées à partir de corps de seringues (McPhail, 2013).

La pose de prothèses extra-luminales est principalement indiquée lors de collapsus cervical du fait de la meilleure accessibilité de la trachée dans cette région (Hawkins, 2013a; Maggiore, 2014) bien que Becker *et al.* (2012) aient montré qu'un collapsus intra-thoracique ne contre-indiquait pas cette technique.

Dans une étude récente, Chisnell et Prado (2014) rapportent une amélioration des signes cliniques dans 96 % des cas avec cette technique. Par ailleurs, plus de 60 % des chiens opérés n'ont pas eu besoin de traitement médical suite à la mise en place des prothèses.

Figure 18. Schématisation du placement d'une prothèse extra-luminale

A. Glissement de la prothèse en regard de la zone à opérer. **B.** La prothèse est enroulée autour de la trachée. **C.** Sutures permettant le maintien en place de la prothèse.

Les complications les plus fréquentes liées à cette technique sont (McPhail, 2013 ; Moser et Geels, 2013) :

- Une atteinte du nerf laryngé récurrent donnant un laryngospasme, une parésie voire une paralysie laryngée. Cette dernière a été retrouvée dans 18 % des cas dans l'étude de Chisnell et Prado (2014) et peut nécessiter une nouvelle intervention chirurgicale (latéralisation des cartilages arythénoïdes);
- Une inflammation locale (trachée ou autres structures) parfois associée à une collection sérohémorragique ;
- Une nécrose trachéale lors de dissection trop agressive ou d'implantation de prothèses mal préparées (la stérilisation au gaz est, dans ce sens, déconseillée) ;
- Une migration intratrachéale des prothèses.

3.2. Collapsus bronchique

Le traitement du collapsus bronchique est encore peu décrit en médecine vétérinaire. Un cas concernant un chien atteint de bronchomalacie associée à une cardiomégalie gauche a été récemment rapporté (Dengate *et al.*, 2014).

Le traitement chirurgical a consisté en le placement d'un stent intra-luminal dans la bronche primaire affectée. Le chien, qui était référé pour des crises de toux paroxysmique et des épisodes de cyanose des muqueuses, a présenté une assez bonne amélioration clinique post-opératoire. Il est mort 102 jours plus tard des suites de sa maladie cardiaque mais n'a présenté jusqu'alors que des épisodes de toux occasionnels à résolution spontanée.

3.3. Gestion post-opératoire

Il est préférable d'hospitaliser les animaux au minimum 48 heures après la chirurgie car bien que les complications immédiates soient relativement rares (Sura et Krahwinkel, 2008; Chisnell et Prado, 2014), celles-ci nécessitent souvent une prise en charge d'urgence.

Certains animaux peuvent en effet mourir peu de temps après la chirurgie, en hospitalisation ou après le retour à la maison (Moritz *et al.*, 2004; Sura et Krahwinkel, 2008; Chisnell et Prado, 2014). Ce dernier point justifie l'importance d'une bonne surveillance du chien par le propriétaire, d'une restriction maximale de l'exercice pendant 3 à 7 jours et de l'application des mesures hygiéniques présentées précédemment (McPhail, 2013).

La prescription de morphiniques tels que le butorphanol peut être bénéfique suite à la chirurgie de par leurs effets antitussifs et sédatifs.

Un contrôle endoscopique est conseillé 1 à 2 mois après la chirurgie, voire plus tard si des signes respiratoires réapparaissent (McPhail, 2013).

Il est important de prévenir le propriétaire que même si un certain degré d'amélioration peut être perçu immédiatement après la chirurgie (quelle que soit la méthode employée), une toux ou d'autres signes respiratoires peuvent persister pendant plusieurs semaines du fait de l'inflammation locale engendrée (McPhail, 2013).

G. Pronostic

Pour les animaux répondant bien au traitement médical et aux mesures hygiéniques, le pronostic est bon (Hawkins, 2013a; Maggiore, 2014). Le problème est que la progression de la maladie ne peut être que ralentie et bon nombre d'entre eux risquent de devenir réfractaires au traitement après un certain temps (Sura et Krahwinkel, 2008; Maggiore, 2014).

Bien que les progrès de la chirurgie ces dernières années aient largement diminué les taux de morbidité et de mortalité liés à l'intervention (Hawkins, 2013a), ce dernier en phase péri- et postopératoire reste relativement élevé : autour de 10 % quelle que soit la technique employée

(Becker *et al.*, 2012; Durant *et al.*, 2012). En l'absence de complication, le traitement chirurgical permet toutefois une nette amélioration de la qualité de vie de la plupart des animaux réfractaires au traitement médical (McPhail, 2013). Cependant, ce traitement n'étant pas curatif, des signes cliniques peuvent persister voire s'aggraver progressivement (Moritz *et al.*, 2004; McPhail, 2013; Dengate *et al.*, 2014).

Sura et Krahwinkel (2008) rapportent qu'un an après le placement d'un stent intra-luminal, 9 chiens sur les 12 opérés étaient toujours en vie dont 7 plus de 2 ans après.

Becker *et al.* (2012) ont étudié la survie de chiens opérés à l'aide de prothèses extra-luminales. La survie médiane rapportée était de 4 ans environ.

IV. LES MALADIES BRONCHIQUES CHRONIQUES FÉLINES

Dans le cadre de maladies respiratoires chroniques, ce terme regroupe principalement deux entités distinctes pourtant très proches sur le plan clinique et paraclinique : l'asthme félin et la bronchite chronique féline (Reinero, 2011 ; Hawkins, 2013a). Une réelle distinction entre ces deux maladies n'a été faite que récemment dans la littérature, les auteurs s'efforçant d'essayer de trouver des moyens de les différencier (Nafe et al., 2010 ; Hirt et al., 2011 ; Johnson et Vernau, 2011 ; Allerton et al., 2013). Dans l'état actuel des connaissances, si des pistes diagnostiques semblent se profiler (Hirt et al., 2011 ; Allerton et al., 2013), celles-ci sont encore peu claires et non standardisées. Par ailleurs, les mesures thérapeutiques proposées actuellement restent similaires. C'est pourquoi il a été choisi, dans ce travail, de présenter les deux maladies conjointement.

L'objectif actuel est donc d'affiner les connaissances dans la pathogénie de ces maladies afin de développer de nouveaux moyens diagnostiques et thérapeutiques spécifiques (Reinero, 2011).

Comme pour les autres maladies respiratoires chroniques, les chats atteints présentent souvent des signes depuis longtemps sans qu'ils soient considérés comme alarmants par les propriétaires, laissant évoluer la maladie jusqu'à un stade parfois irréversible (Trzil et Reinero, 2014). Le vétérinaire a donc un rôle important dans l'anticipation de cette prise de conscience et donc de la prise en charge de l'animal en demandant si ce dernier présente de la toux à la maison, lors d'une consultation de routine par exemple. Cette question est d'autant plus pertinente que ce signe clinique est beaucoup plus spécifique d'une atteinte respiratoire (et principalement bronchique) chez le chat que chez le chien (Anderson-Wessberg, 2010).

A. Présentation des maladies

1. L'asthme félin

L'asthme félin résulte d'une réaction immunitaire exagérée envers un aéro-allergène provoquant une réaction inflammatoire intense ainsi que des modifications structurales et biochimiques spécifiques au sein de l'arbre respiratoire (Trzil et Reinero, 2014).

2. La bronchite chronique

La bronchite chronique du chat est semblable à celle du chien (*cf.* paragraphe II) c'est-à-dire imputable à des agressions répétées envers les voies respiratoires (Trzil et Reinero, 2014).

B. Étiopathogénie

L'arbre respiratoire possède de nombreux moyens de défense (mucus, escalator muco-ciliaire, macrophages alvéolaires, ...). Si ceux-ci sont insuffisants pour éliminer les antigènes inhalés, il s'ensuit une réaction inflammatoire (bronchite) ou allergique (asthme) (Byers et Dhupa, 2005a).

1. L'asthme félin

Comme pour toute réaction allergique, les manifestations cliniques de l'asthme félin découlent d'une réponse immunitaire inadéquate. Il se caractérise par une hypersensibilité de type I suite à la présentation d'un antigène inhalé, provoquant une sensibilisation de l'animal (Reinero, 2011; Lopez, 2012). Si le même antigène se présente à nouveau, une forte réaction inflammatoire éosinophilique se déclenche. Elle est accompagnée d'un bronchospasme (auquel le chat est prédisposé par rapport au chien) et de modifications structurelles des parois bronchiques (Byers et Dhupa, 2005a).

La sécrétion de mucus est également augmentée et son expulsion diminuée ce qui provoque son accumulation au sein des voies respiratoires (Byers et Dhupa, 2005a).

Ces altérations structurelles et fonctionnelles (bronchospasme, remodelage des voies respiratoires, hyperproduction de mucus) entrainent une augmentation de la résistance au passage de l'air dans les voies respiratoires basses, principalement lors de l'expiration (Byers et Dhupa, 2005a).

Trzil et Reinero (2014) résument ainsi la pathogénie de l'asthme par quatre composantes majeures :

- L'inflammation des voies respiratoires ;
- L'hyperréactivité des voies respiratoires ;
- La diminution du flux d'air;
- Le remodelage des voies respiratoires.

2. La bronchite chronique

Sa pathogénie est semblable à celle de la BCC. Les mécanismes exposés dans la figure 7 sont donc transposables à l'espèce féline avec, en complément, sa prédisposition au bronchospasme.

C. Epidémiologie

On estime que les maladies bronchiques félines concernent 1 à 5 % de la population féline (Trzil et Reinero, 2014).

Bien que ce critère ne soit que partiellement fiable, Allerton *et al.* (2013) ont remarqué que les animaux atteints d'asthme (n = 8) étaient en moyenne plus jeunes que ceux atteints de bronchite chronique (n = 4) au moment du diagnostic (3,4 et 6,5 ans, respectivement). Ce résultat est également retrouvé dans l'étude de Hirt *et al.* (2011) avec une moyenne de 5,3 ans pour les chats atteints d'asthme (n = 9) et de 9,8 ans pour ceux atteints de bronchite chronique (n = 6).

Le Siamois est surreprésenté dans une étude (Adamama-Moraitou *et al.*, 2004), cette prédisposition n'est toutefois pas retrouvée dans d'autres. De même, il ne semble pas y avoir de prédisposition liée au sexe.

Le tabagisme passif est considéré comme un facteur de risque potentiel (Byers et Dhupa, 2005a). Toutefois, tout aéro-allergène environnemental doit être considéré comme tel (fumée de cheminée, aérosols, poussière de litière, plantes ...) (Lopez, 2012; Hawkins, 2013a).

D. Signalement et signes cliniques

Les animaux sont souvent présentés avec un historique d'épisodes de toux paroxysmique associés ou non à des crises de détresse respiratoire. Ces chats peuvent toutefois apparaître tout à fait normaux entre les crises (Byers et Dhupa, 2005a; Trzil et Reinero, 2014).

L'apparition de ces signes est rarement datée de façon précise par les propriétaires (Foster *et al.*, 2004a). Ils sont toujours présents depuis plusieurs mois (Adamama-Moraitou *et al.*, 2004; Foster *et al.*, 2004a; Hirt *et al.*, 2011; Allerton *et al.*, 2013).

1. Signes cliniques fréquents

Les signes cliniques les plus souvent retrouvés lors de maladie bronchique féline sont (Corcoran *et* al., 1995 ; Dye et al., 1996 ; Adamama-Moraitou et al., 2004 ; Foster et al., 2004) :

- La toux chronique, généralement par crises et parfois paroxysmique dans 76 à 91 % des cas. Il faut se méfier car la toux peut être émétisante, le motif de consultation peut alors être des « vomissements » (Trzil et Reinero, 2014);
- La dyspnée expiratoire dans environ 30 à 40 % des cas.

2. Autres signes cliniques

D'autres signes respiratoires peuvent être retrouvés chez des chats atteints de maladie bronchique. Dans leur étude portant sur 25 chats, Foster *et al.* (2004) ont ainsi décelé des bruits respiratoires anormaux audibles sans auscultation chez quatre d'entre eux (16 %), des signes d'atteinte du haut appareil respiratoire chez trois (12 %) et une tachypnée dans un cas seulement (4 %).

3. Complications

La principale complication est une crise d'asthme se manifestant par une détresse respiratoire aiguë. Celle-ci est souvent accompagnée d'un pneumothorax et représente une urgence médicale (Adamama-Moraitou *et al.*, 2004).

Par ailleurs, comme pour toute maladie respiratoire chronique, les lésions engendrées peuvent favoriser les surinfections bactériennes, une autre cause de mortalité potentielle (Lopez, 2012).

E. Démarche diagnostique

1. Examen clinique

Comme déjà mentionné, les animaux atteints d'asthme ou de bronchite chronique ne présentent pas systématiquement de signes cliniques lors de la consultation. Ceux-ci sont le plus souvent rapportés par les propriétaires (Byers et Dhupa, 2005a; Trzil et Reinero, 2014). La toux peut toutefois être observée spontanément ou suite à une légère palpation de la trachée (Trzil et Reinero, 2014).

L'auscultation pulmonaire peut être normale, comme chez 41 % des animaux examinés dans l'étude d'Adamama-Moraitou *et al.* (2004). Lorsqu'elle est modifiée, elle révèle le plus souvent des sifflements expiratoires (dans 25 à 40 % des cas) parfois associés à des crépitements (environ 15 % des cas) (Adamama-Moraitou *et al.*, 2004 ; Foster *et al.*, 2004a).

2. Diagnostic différentiel

Il est intéressant de noter que contrairement à ce que l'on retrouve chez le chien, la toux est rarement rencontrée lors de cardiopathie chez le chat. Lorsqu'il est rapporté, ce signe oriente donc fortement vers une atteinte respiratoire (Anderson-Wessberg, 2010).

Le diagnostic différentiel de la dyspnée chez le chat regroupe : les causes d'épanchement pleural (insuffisance cardiaque congestive, pyothorax, chylothorax, hémothorax, péritonite infectieuse féline, etc.), les causes d'atteinte pulmonaire : bactériennes, parasitaires (aeurostrongylose, toxoplasmose, etc.) et ou encore tumorales médiastinales ou pulmonaires (lymphome médiastinal, tumeur pulmonaire primitive ou secondaire) (Byers et Dhupa, 2005a; Hawkins 2013a).

3. Examens complémentaires

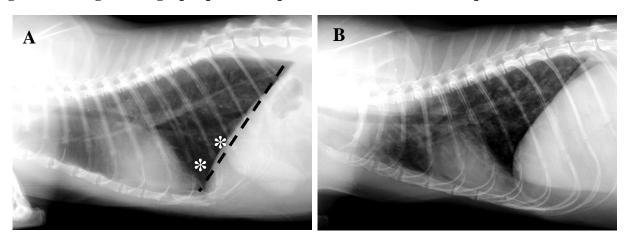
3.1. Examens de routine

3.1.1. Analyses sanguines classiques

Les chiffres rapportés dans la littérature concernant les analyses biochimique et hématologique ainsi que leur intérêt dans le diagnostic et la caractérisation d'une maladie bronchique féline sont difficiles à interpréter car de nombreuses études ne font pas la distinction entre l'asthme félin et la bronchite chronique. La principale anomalie retrouvée est une éosinophilie dans 17 à 46 % des cas (Corcoran *et al.*, 1995; Dye *et al.*, 1996; Adamama-Moraitou *et al.*, 2004) et même s'il parait logique qu'un animal atteint d'asthme aura plus tendance à la présenter qu'un autre atteint de

bronchite chronique, aucune étude n'a permis de confirmer ce résultat. Il est cependant avéré qu'une absence d'éosinophilie ne permet en aucun cas d'exclure l'asthme félin (Reinero, 2011). L'examen biochimique ne révèle généralement pas d'anomalie significative (Trzil et Reinero, 2014)

bien que dans certaines études, une hyperprotéinémie soit parfois rapportée sans qu'elle ne soit bien expliquée (Adamama-Moraitou *et al.*, 2004; Foster *et al.*, 2004a).


3.1.2. Radiographies thoraciques

La figure 19 montre une image radiographique classique d'un chat atteint de maladie bronchique chronique. On retrouve généralement un pattern bronchique à broncho-interstitiel (Corcoran *et al.*, 1995; Dye *et al.*, 1996; Adamama-Moraitou *et al.*, 2004; Foster *et al.*, 2004a).

D'autres anomalies, moins fréquentes mais un peu plus spécifiques sont un aplatissement du diaphragme, une atélectasie du lobe moyen droit, une opacification alvéolaire en « patchs » ou encore des signes de rétention aérique (formation de bulles) pouvant aller jusqu'à une rupture de ces bulles et un pneumothorax (Adamama-Moraitou *et al.*, 2004 ; Foster *et al.*, 2004a).

Il est important de noter qu'elles peuvent être normales jusqu'à dans 25 % des cas (Adamama-Moraitou *et al.*, 2004). Leur principal intérêt réside donc dans l'élimination d'autres causes de dyspnée, notamment les épanchements ou les tumeurs (Trzil et Reinero, 2014).

Figure 19. Images radiographiques classiques lors de maladie bronchique féline

A. Opacification bronchique marquée avec signes de rétention aérique (*) et aplatissement du diaphragme (pointillés). **B.** Opacification bronchique marquée avec opacification alvéolaire multifocale (en « patchs »). – *Crédit : Unité d'imagerie médicale, ENVT*

3.1.3. Exclusion des causes parasitaires

Cette étape est indispensable car de nombreuses causes parasitaires peuvent mimer les signes cliniques et paracliniques (notamment l'éosinophilie) des maladies bronchiques félines (Byers et Dhupa, 2005a; Hawkins 2013a). Les parasites des voies respiratoires retrouvés chez le chat sont : *Aelurostrongylus abstrusus*, *Paragonimus* spp, *Toxoplasma gondii* (Byers et Dhupa, 2005a; Hawkins 2013b) et dans une moindre mesure *Capillaria aerophila* (Hawkins, 2013b).

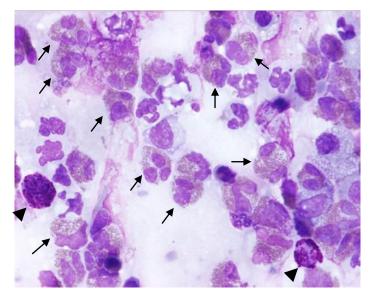
L'étude de Lacorcia *et al.* (2009) a comparé différentes méthodes de détection d'*Aerulostrongylus abstrusus* chez 80 chats. Ils ont déterminé que, si elles avaient toutes une spécificité de 100 % (à l'exception de l'examen histologique des poumons), l'examen présentant la meilleure sensibilité et donc la meilleure valeur prédictive négative était la méthode de Baermann. Elle est également utile dans le diagnostic des autres maladies parasitaires citées ci-dessus (Byers et Dhupa, 2005a; Hawkins, 2013b) à l'exception de la toxoplasmose qui doit être recherchée par sérologie (Byers et Dhupa, 2005a).

Dans les zones d'endémie, la recherche de *Dirofilaria immitis* est également recommandée (Trzil et Reinero, 2014).

3.2. Examens spécialisés

3.2.1. Bronchoscopie et LBA

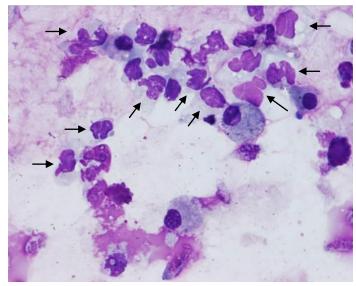
Rappelons que ces examens nécessitent une anesthésie générale et qu'ils peuvent donc être contreindiqués chez certains animaux. De plus, ils peuvent être dangereux chez des animaux présentant une sensibilité bronchique augmentée ce qui en fait des examens à éviter en première intention (Trzil et Reinero, 2014).


Johnson et Vernau (2011) ont recherché les lésions remarquables à la bronchoscopie chez 48 chats présentés pour diverses maladies respiratoires dont 23 atteints d'une maladie bronchique féline chronique. Parmi ces derniers, les lésions les plus fréquemment rencontrées étaient :

- Une hypersécrétion de mucus dans 91 % des cas (21/23) ;
- Une sténose des voies respiratoires dans 61 % des cas (14/23);
- Des irrégularités de la muqueuse bronchique dans 57 % des cas (13/23) ;
- Un certain degré de collapsus des voies respiratoires (permanent ou non) dans 57 % des cas (13/23);
- Une hyperhémie de la muqueuse dans 44 % des cas (10/23);
- Des signes de bronchiectasie dans 17 % des cas (4/23).

Ces lésions sont malheureusement peu spécifiques et ne permettent pas de différencier l'asthme de la bronchite chronique. Elles sont par ailleurs retrouvées en proportions similaires lors de maladies bronchiques infectieuses et néoplasiques (Johnson et Vernau, 2011).

L'analyse cytologique du LBA est bien plus intéressante. Elle est actuellement considérée comme le meilleur moyen de caractériser les maladies bronchiques félines (Reinero, 2011). En effet, les chats asthmatiques présentent une infiltration éosinophilique des voies respiratoires (figure 20) alors que ceux atteints de bronchite chronique, comme pour la BCC, présentent une majorité de granulocytes neutrophiles non dégénérés (figure 21).


Figure 20. Examen cytologique après cytocentrifugation du LBA d'un chat atteint d'asthme félin

Infiltrat inflammatoire éosinophilique majeur (flèches). On visualise également quelques macrophages et mastocytes (têtes de flèches) (MGG, x1000).

Crédit : Laboratoire Central de Biologie Médicale, ENVT

Figure 21. Examen cytologique après cytocentrifugation du LBA d'un chat atteint de bronchite chronique

Infiltrat inflammatoire neutrophilique majeur (flèches). On visualise également quelques macrophages (MGG, x1000).

Crédit : Laboratoire Central de Biologie Médicale, ENVT

La plupart des auteurs se basent sur les résultats d'Hawkins *et al.* (1990), considérant qu'un taux de granulocytes éosinophiles supérieur à 17 % est évocateur d'asthme félin et un taux de granulocytes neutrophiles supérieur à 7 % est évocateur de bronchite chronique (Nafe *et al.*, 2010; Allerton *et al.*, 2013). Cependant, cette dichotomie est compliquée par des cas d'inflammation mixte (Nafe *et al.*, 2010; Allerton *et al.*, 2013).

Malgré ces défauts, le LBA permet dans de nombreux cas d'établir un diagnostic (Reinero, 2011; Hawkins, 2013a). Il permet aussi de mettre en évidence des affections bactériennes (visualisation de bactéries, neutrophiles dégénérés, mise en culture), parasitaires (par visualisation d'œufs, de larves ou d'adultes) et tumorales (Andreasen, 2003; Foster, 2004b; Johnson et Vernau, 2011).

3.2.2. Examen tomodensitométrique

La nécessité d'une anesthésie générale a longtemps été un frein à l'exécution d'un scanner chez des animaux atteints de maladies cardiopulmonaires (Oliveira *et al.*, 2011a). Une équipe de l'Université de l'Illinois a récemment développé un dispositif (déjà évoqué dans la partie sur le SORB), le Vet MouseTrapTM, qui pourrait révolutionner l'approche diagnostique de certaines de ces maladies en permettant de s'affranchir du risque anesthésique.

Ce dispositif a été bien toléré par 91 % des chats d'une étude (Oliveira *et al.*, 2011a). De plus, même s'il a fallu recommencer la procédure pour près de 50 % d'entre eux, le Vet MouseTrapTM a permis d'obtenir des images interprétables (pas ou très peu d'artéfacts de mouvements) dans 94 % des cas (Oliveira *et al.*, 2011a).

Après avoir validé l'utilité de ce système, Oliveria *et al.* (2011b) l'ont testé sur des chats atteints de maladies respiratoires diverses et ont comparé les résultats du scanner à ceux des radiographies thoraciques. D'une manière générale, l'examen tomodensitométrique s'est montré plus précis que les radiographies pour établir un diagnostic de maladie respiratoire chez le chat et cette différence s'est avérée encore plus marquée chez les chats atteints de maladies bronchiques (Oliveira *et al.*, 2011b). En effet, le scanner a donné un diagnostic correct dans 89 % des cas et les radiographies dans 50 % des cas seulement (Oliveira *et al.*, 2011b).

Les lésions les plus fréquemment rencontrées au scanner lors de maladie bronchique féline sont l'épaississement des parois bronchiques (8 chats sur 9), une opacification alvéolaire multifocale (5 chats sur 9) et des signes de bronchiectasie (4 chats sur 9) (Oliveira *et al.*, 2011b).

L'étude s'est toutefois arrêtée au diagnostic de maladie bronchique féline. L'examen tomodensitométrique ne semble pas, à l'heure actuelle, permettre de faire la distinction entre l'asthme félin et la bronchite chronique (Oliveria *et al.*, 2011b).

3.3. Examens réservés au milieu hospitalier universitaire

3.3.1. Généralités

Les principaux efforts fournis, à l'heure actuelle, sont dans la recherche d'éléments cliniques ou biologiques permettant de différencier les deux maladies. Nafe *et al.* (2010) ont ainsi cherché à mesurer les concentrations de plusieurs biomarqueurs dans le LBA de près de 100 chats présentant des signes de maladie bronchique chronique mais leurs résultats étaient décevants. Toutefois, les résultats obtenus grâce à la pléthysmographie barométrique du corps entier sont encourageants.

3.3.2. Pléthysmographie barométrique du corps entier (PBCE)

Le principe de la PBCE a été expliqué dans la partie sur le SORB. C'est examen est, d'une manière générale, très bien toléré par le chat (Kirschvink *et al.*, 2006).

Son intérêt dans le diagnostic des maladies bronchiques félines repose dans sa capacité à évaluer la bronchoréactivité du patient, grâce à l'enhanced pause (Penh). Lorsqu'on provoque une bronchoconstriction en faisant inhaler à l'animal de l'histamine ou un agoniste cholinergique (le

plus souvent du carbachol), la Penh augmente. Les chats présentant une hyperréactivité bronchique (l'un des critères de l'asthme) présentent donc une Penh augmentée pour des concentrations faibles en produit inhalé.

D'après l'étude de Hirt *et al.* (2011), la spécificité du test est de 100 % et la sensibilité de 60 % pour la détection d'une maladie bronchique féline, sans la caractériser. Certains chats atteints de bronchite chronique (2 sur les 6) ont toutefois présenté une augmentation de la Penh et d'autres atteints d'asthme (2 sur les 9) n'ont pas répondu (Hirt *et al.*, 2011). Ainsi, si l'on calcule la sensibilité et la spécificité du test pour différencier asthme et bronchite chronique chez un animal pour qui la maladie bronchique est avérée, on obtient respectivement 78 % et 67 %.

Notons toutefois que même si les intervalles se chevauchent, l'étude de Hirt *et al.* (2011) a montré que l'augmentation de la Penh semblait souvent plus importante chez les animaux atteints d'asthme (5 à 15 fois la valeur usuelle) que chez ceux atteints de bronchite chronique (4 à 7 fois la valeur usuelle). Ce résultat est retrouvé dans l'étude d'Allerton *et al.* (2013) pour qui la Penh était significativement plus élevé chez les chats présentant une inflammation respiratoire éosinophilique (GNE > 17 %, supposés asthmatiques) que chez ceux ne présentant pas d'inflammation éosinophilique (GNE < 17 %, supposés atteints de bronchite chronique).

Enfin, sa répétabilité chez le chat semble faire de la PBCE un bon moyen de suivi de réponse au traitement des maladies bronchiques félines, notamment l'asthme (Kirschvink *et al.*, 2007).

3.3.3. Diagnostic immunologique

La technique d'intradermoréaction de même que le dosage d'IgE spécifiques de certains allergènes peuvent être utilisés afin d'identifier les éventuels allergènes impliqués dans la maladie (Reinero, 2011; Trzil et Reinero, 2014). La première de ces techniques semble toutefois plus sensible (Lee-Fowler *et al.*, 2009).

Ces techniques sont encore peu développées dans les cas d'asthme félin mais peuvent s'avérer intéressantes pour mettre en place une thérapie ciblée (éviction de l'allergène incriminé ou désensibilisation par vaccination allergénique rapide) (Trzil et Reinero, 2014).

F.Traitement

En l'état actuel des connaissances, il n'existe pas de traitement spécifique pour l'une ou l'autre des maladies bronchiques félines (Reinero, 2011). C'est pourquoi les mesures thérapeutiques proposées pour l'asthme et la bronchite chronique, principalement prophylactiques et symptomatiques, sont très similaires.

1. Mesures hygiéniques

Il s'agit là d'agir sur l'environnement pour limiter le risque de déclenchement d'une crise. Tous les allergènes possibles doivent être supprimés : la fumée de cigarette, de cheminée, les aérosols, les parfums d'intérieur, la poussière, certaines plantes, la litière si celle-ci est poussiéreuse, ... (Hawkins, 2013a).

S'agissant d'une maladie allergique, certains chats bénéficient également d'un passage à une alimentation hypoallergénique (Adamama-Moraitou *et al.*, 2004). Il peut être intéressant de mettre en place une tentative d'éviction des allergènes potentiels en isolant le chat c'est-à-dire en modifiant totalement ou progressivement son environnement par le retrait de ces allergènes suspectés.

Les bénéfices apportés par ces changements dans l'environnement sont généralement observés après 1 à 2 semaines (Hawkins, 2013a).

Enfin, Manens *et al.* (2012) ont montré que l'obésité augmentait la réactivité bronchique. Même si ceci a été prouvé chez le chien et pas encore chez le chat, on peut supposer que ce résultat s'applique également pour cette espèce et peut donc aggraver l'expression clinique de l'asthme. Il est de ce fait important d'encourager les propriétaires de chats obèses à les faire perdre du poids.

2. Traitement médical

2.1. Glucocorticoïdes

Les glucocorticoïdes, notamment la prednisolone, sont les médicaments les plus efficaces pour traiter la plupart des cas de maladies bronchiques félines. Ils peuvent être utilisés *per* os, par inhalation ou par voie parentérale. Les réponses clinique et paraclinique (notamment la diminution du taux de granulocytes éosinophiles dans le LBA) sont semblables quelle que soit la voie d'administration (Reinero *et al.*, 2005 ; Leemans *et al.*, 2012).

Le traitement *per os* peut être commencé à la dose de 0,5 à 1 mg/kg toutes les 12 heures. Si cela ne suffit pas après une semaine, la dose peut être doublée (Hawkins, 2013a). Une fois les signes contrôlés, la dose peut être diminuée progressivement. Un objectif raisonnable (en termes de risque d'apparition d'effets secondaires) est d'arriver à la dose de 0,5 mg/kg tous les 2 jours (Hawkins, 2013a). Cette voie d'administration est à éviter chez les chats obèses; elle est de plus contre-indiquée chez les chats atteints de diabète sucré ou d'insuffisance cardiaque congestive (Cohn, 2010a).

Par inhalation, la molécule la plus utilisée est le proprionate de fluticasone. Cette voie d'administration permet de limiter le risque de survenue d'effets secondaires (Hawkins, 2013a; Trzil et Reinero, 2014). Comme décrit chez le chien dans le paragraphe de la BCC, un dispositif adapté au chat existe (AeroKat®, semblable à l'AeroDawg® présenté dans la figure 11) et son mode d'utilisation est semblable. Des vidéos claires donnant des conseils sur l'utilisation du dispositif existent sur internet (Hawkins, 2013a). Comme pour la voie orale, on peut commencer le traitement à une dose élevée (110 ou 220 µg toutes les 12 heures) pour ensuite la diminuer progressivement jusqu'à atteindre la dose minimale efficace (Hawkins, 2013a).

Une dernière solution, chez les chats très difficiles à médicaliser pour lesquels les propriétaires ne se sentent pas capable d'administrer le traitement par l'une des voies d'administration ci-dessus, est l'injection intramusculaire d'acétate de méthylprednisolone (10 mg/chat) qui permet d'avoir un effet antiinflammatoire pendant 3 à 6 semaines (Cohn, 2010a; Hawkins, 2013a). Cette molécule augmente cependant le risque de survenue d'effets secondaires (Cohn, 2010a).

2.2. Bronchodilatateurs

Les bronchodilatateurs ne diminuent pas l'inflammation des voies aériennes. A ce titre, ils ne peuvent pas être utilisés seuls pour traiter les maladies bronchiques félines (Trzil et Reinero, 2014). Ils sont toutefois souvent intéressants en association avec les glucocorticoïdes pour traiter le bronchospasme qui accompagne les maladies bronchiques félines. Une étude récente de Leemans *et al.* (2012) a montré que l'association du proprionate de fluticasone et d'un bronchodilatateur (le salmeterol) permettait une meilleure diminution de la réactivité bronchique chez des chats asthmatiques (modèle expérimental) que le propionate de fluticasone inhalé ou la prednisolone orale seuls.

La théophylline est intéressante pour les mêmes raisons que celles exposées chez le chien (*cf.* paragraphe II). Chez le chat, sa formule longue-action peut être administrée 1 fois par jour, de préférence le soir, à la dose de 15 mg/kg. La formule à courte action peut être administrée 2 fois par jour à la dose de 4 mg/kg (Hawkins, 2013a). Pour contrôler les concentrations sériques, le dosage de la théophylline doit se faire 12 heures après l'administration de la forme longue-action ou 2 heures après celle de la forme à courte-action (Hawkins, 2013a).

La terbutaline peut également être utilisée par voie orale à une dose d'environ 0,3 à 0,6 mg par chat (un huitième à un quat de comprimé de 2,5 mg) toutes les 12 heures.

Les bronchodilatateurs par inhalation sont plutôt réservés aux situations d'urgence. Aussi, il peut être utile pour les propriétaires d'avoir le nécessaire à disposition chez eux (chambre à inhalation, masque et doses d'albutérol pulvérisable) pour pouvoir stopper une crise (Hawkins, 2013a). Il est toutefois très important de les prévenir qu'une utilisation abusive d'albutérol risque d'avoir l'effet inverse à celui recherché. En effet, l'albutérol est un mélange racémique de deux énantiomères : le R qui est responsable de l'effet bronchodilatateur et le S qui s'accumule plus facilement que le premier et qui promeut le bronchospasme et l'inflammation des voies respiratoires (Trzil et Reinero, 2014). Une forme contenant uniquement le R-énantiomère est disponible et pourrait être envisagée pour un traitement chronique mais elle coûte beaucoup plus cher (Trzil et Reinero, 2014).

2.3. Traitement antiparasitaire

Certains auteurs recommandent un traitement systématique au fenbendazole afin d'exclure toute cause parasitaire (Trzil et Reinero, 2014). Administré à la dose de 50 mg/kg *per os* une fois par jour pendant 15 jours, il permet d'éliminer la plupart des parasites cardiopulmonaires (Hawkins, 2013b).

2.4. Ciclosporine

Pour les cas réfractaires aux corticoïdes, la ciclosporine peut être utilisée à une dose de 5 mg/kg *per os* deux fois par jour. Les principaux effets secondaires sont des troubles digestifs et, plus rarement, un abattement, une anorexie, un amaigrissement ou encore une lymphopénie (Ettinger, 2010).

2.5. Complémentation en oméga 3

Une étude de Leemans *et al.* (2010) portant sur 8 chats présentant un modèle expérimental d'asthme félin s'est intéressée à l'influence de la complémentation alimentaire en oméga 3 (20 mg par jour) associée à un antioxydant, la lutéoline. Ce traitement n'entraine pas une diminution du taux de granulocytes éosinophiles dans le LBA mais permet une diminution significative de la réactivité bronchique évaluée par PBCE (Leemans *et al.*, 2010). Son utilisation en adjuvant aux glucocorticoïdes et bronchodilatateurs peut donc être intéressante.

2.6. Immunothérapie

Cette voie thérapeutique visant à induire une tolérance immunitaire envers les allergènes responsables de la maladie est considérée comme l'avenir du traitement de l'asthme en médecine humaine et probablement aussi en médecine vétérinaire (Trzil et Reinero, 2014).

Les protocoles d'immunothérapie proposés n'ont été testés que sur des modèles expérimentaux d'asthme félin mais ont tout de même donné des résultats encourageants avec notamment une diminution significative de l'inflammation éosinophilique (Reneiro *et al.*, 2006; Reinero *et al.*, 2012).

La principale technique proposée est la vaccination allergénique rapide qui consiste en une série d'injections de solutions contenant des allergènes (généralement ceux qui sont incriminés dans la maladie du patient) avec une concentration croissante et sur un laps de temps très court (Reinero *et al.*, 2006). Cette technique est dite rapide car contrairement aux techniques d'hyposensibilisation classiques où la dose de maintenance est atteinte progressivement en quelques semaines à quelques mois, elle est ici atteinte en quelques heures à quelques jours. Dans les deux cas, des injections régulières doivent toutefois être poursuivies sur une plus longue période (généralement plusieurs mois à plusieurs années) pour maintenir l'hyposensibilisation.

Si l'identification précise de(s) l'allergène(s) responsable(s) est nécessaire pour espérer une guérison complète de l'animal à la fin du protocole de vaccination allergénique rapide (Trzil et Reinero, 2014), une étude récente a démontré que l'utilisation de quelques-uns d'entre eux seulement ou même d'allergènes non responsables permettait tout de même une réponse clinique satisfaisante sur des modèles d'asthme expérimentaux (Reinero *et al.*, 2012).

2.7. Traitement des complications

2.7.1. Détresse respiratoire aiguë

La détresse respiratoire due à une crise d'asthme est une urgence médicale. Les animaux présentés dans cet état peuvent bénéficier d'une oxygénothérapie couplée à des injections de glucocorticoïdes et bronchodilatateurs (Adamama-Moraitou *et al.*, 2004). Des injections d'adrénaline et d'atropine peuvent s'avérer nécessaires pour les cas réfractaires à cette prise en charge initiale (Adamama-Moraitou *et al.*, 2004).

2.7.2. Surinfections bactériennes

Le traitement des surinfections bactériennes a déjà été évoqué dans la partie sur la bronchite chronique. Il doit idéalement se baser sur un antibiogramme (Dear, 2014).

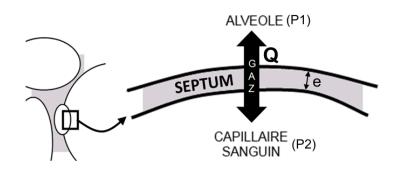
G. Pronostic

Le pronostic est bon pour la plupart des chats (Hawkins, 2013a). Si les mesures hygiéniques sont correctement appliquées, le traitement peut même parfois être arrêté. Toutefois, les rechutes ne sont pas rares.

Malheureusement, peu d'études se sont intéressées au suivi à long terme de chats atteints de maladies bronchiques chroniques. Adamama-Moraitou *et al.* (2004) ont suivi 19 chats traités *per os* ou par injections intramusculaires toutes les 2 à 3 semaines. Neuf (47 %) d'entre eux sont devenus asymptomatiques. Par contre, les dix autres (53 %) ont présenté des rechutes tous les 3 à 6 mois. Il n'existe a priori, aucun critère clinique ou paraclinique permettant de prédire une rechute

Il n'existe a priori, aucun critère clinique ou paraclinique permettant de prédire une rechute (Adamama-Moraitou *et al.*, 2004).

V. FIBROSE PULMONAIRE DU CHIEN


La fibrose pulmonaire (FP) est une maladie idiopathique dont les signes cliniques évoluent lentement et sont souvent considérés comme normaux par les propriétaires car compatibles avec l'âge de l'animal (Corcoran *et al.*, 1999a). Il en découle que la durée moyenne entre la découverte des signes par celui-ci et le diagnostic est de 7,9 mois (Corcoran *et al.*, 1999a).

Il paraît donc important d'informer les propriétaires de l'existence de cette maladie bien qu'à l'heure actuelle, aucun lien n'ait été établi entre la précocité de détection de celle-ci et l'espérance de vie du chien après le diagnostic. Et même si en médecine humaine certaines formes précoces sont considérées comme réversibles (Heikkilä et Rajamäki, 2014), les similitudes entre la FP du chien et celle de l'Homme sont encore peu claires (Norris *et al.*, 2005 ; Syrjä *et al.*, 2013).

A. Définition de la maladie

La FP affecte essentiellement le septum alvéolaire, tissu de soutien du parenchyme pulmonaire situé entre l'endothélium des capillaires de l'hématose et la membrane basale de l'épithélium alvéolaire (figure 22) (Norris *et al.*, 2005 ; Plopper et Adams, 2006).

Figure 22. Schéma de l'organisation des échanges pulmonaires

LOI DE FICK

$$Q = \frac{S \times d \times (P1-P2)}{e}$$

Q : volume de gaz qui diffuse à travers la paroi

S : surface de la barrière disponible pour la diffusion

d : coefficient de diffusion du gaz pour une barrière donnée

e : épaisseur de la barrière

P : pression de part et d'autre de la barrière

En situation physiologique, il s'agit d'une matrice extracellulaire se composant classiquement de collagène, de fibres élastiques et de fibrocytes (Plopper et Adams, 2006) au travers de laquelle les échanges gazeux se font par simple diffusion. Cette dernière s'effectue selon la loi de Fick (figure 22) dont le coefficient de diffusion est inversement proportionnel à l'épaisseur traversée (Pilot-Storck, 2009).

Lors de FP, le septum subit un dépôt concentrique, multifocal à diffus, de fibres de collagène augmentant l'épaisseur de la barrière alvéolo-capillaire (Norris *et al.*, 2005; Syrjä *et al.*, 2013). Ceci réduit donc l'importance des échanges gazeux et aboutit à une hypoxie chronique.

B. Étiologie

La cause est inconnue à l'heure actuelle mais la forte prédisposition du West Highland White Terrier (WHWT) laisse suggérer une composante génétique (Heikkilä et Rajamäki, 2014).

C. Épidémiologie

La maladie touche très majoritairement le WHWT (Corcoran *et al.*, 1999a; Johnson *et al.*, 2005; Norris *et al.*, 2005; Heikkilä *et al.*, 2011; Syrjä *et al.*, 2013), mais elle a également été décrite chez d'autres petites races, principalement de type « terrier » : Staffordshire bull terrier (Lobetti *et al.*, 2001; Corcoran *et al.*, 1999b), Bull terrier (Lobetti *et al.*, 2001), Cairn terrier (Johnson *et al.*, 2005), Jack Russel terrier (Corcoran *et al.*, 1999a) et Schipperke (Lobetti *et al.*, 2001).

Les chiens atteints ont entre 3 et 16 ans au moment du diagnostic. On remarque que les races non-WHWT semblent développer la maladie plus tôt : leur moyenne d'âge au diagnostic est de 4 ans selon une étude (Lobetti *et al.*, 2001) alors qu'elle se situe entre 9,5 et 13 ans chez les WHWT (Corcoran *et al.*, 1999a ; Johnson *et al.*, 2005 ; Norris *et al.*, 2005 ; Heikkilä *et al.*, 2011 ; Syrjä *et al.*, 2013).

Il ne semble pas y avoir de prédisposition liée au sexe ou à la stérilisation.

D. Signalement et signes cliniques

Dans chaque cas, les signes cliniques évoluent depuis plusieurs mois avant le diagnostic (2 à 36 mois selon les études). Ils se présentent souvent chez des animaux en bon état général. (Corcoran *et al.*, 1999a; Lobetti *et al.*, 2001; Johnson *et al.*, 2005; Norris *et al.*, 2005; Heikkilä *et al.*, 2011; Syrjä *et al.*, 2013). En effet, la maladie évoluant lentement, on suppose que les chiens s'adaptent progressivement à celle-ci (Heikkilä et Rajamäki, 2014).

1. Signes cliniques fréquents

Les signes les plus fréquents lors de FP sont (Corcoran et al., 1999a; Heikkilä et al., 2011):

- La toux non productive : 60 à 75 % des cas ;
- L'intolérance à l'effort : 60 à 70 % des cas ;
- Des modifications de la courbe respiratoire (tachypnée ou dyspnée restrictive) : 30 à 70 % des cas.

Seuls ou en association, ils représentent souvent le motif de consultation.

2. Autres signes cliniques

Les chiens atteints de FP peuvent également présenter (Corcoran et al., 1999a; Heikkilä et al., 2011):

- Des syncopes : près de 10 % des cas ;
- Une cyanose des muqueuses (au repos ou à l'effort) : près de 10 % des cas ;
- Un halètement permanent : moins de 10 % des cas ;
- Une détresse respiratoire : moins de 10 % des cas.

Ces signes sont souvent indicateurs d'une forme plus évoluée de la maladie (Johnson et al., 2005).

3. Complications

Les complications les plus classiques de la FP à rechercher sont (Heikkilä et Rajamäki, 2014):

- L'hypertension artérielle pulmonaire (HTAP), conséquence d'une hypoxie chronique retrouvée dans plus de 40 % des cas de FP (Schober et Baade, 2006) ;
- Les infections respiratoires secondaires aux lésions pulmonaires engendrées par la maladie. Une baisse de l'état général, une anorexie ou une hyperthermie peuvent alors être rencontrées.

Bien que leurs signes cliniques ne soient pour la plupart pas spécifiques, la recherche de ces complications est importante car leur détection influence le traitement mis en place.

E. Démarche diagnostique

1. Examen clinique

Mis à part les troubles respiratoires (toux, tachypnée, dyspnée, etc.), les chiens atteints de FP sont généralement présentés en bon état général (Heikkilä et Rajamäki, 2014).

L'auscultation pulmonaire révèle des crépitements inspiratoires généralisés dans les deux champs pulmonaires dans 76 à 96 % des cas (Corcoran *et al.*, 1999a; Heikkilä *et al.*, 2011) parfois associés à des sifflements expiratoires (Corcoran *et al.*, 1999a). Plus rarement (moins de 5 % des cas), l'auscultation pulmonaire peut présenter des râles (Corcoran *et al.*, 1999a; Heikkilä *et al.*, 2011) ou même être parfaitement normale (Heikkilä *et al.*, 2011).

L'auscultation cardiaque n'est modifiée qu'en présence d'HTAP. On peut alors entendre un souffle systolique apexien droit de bas grade ou un dédoublement du deuxième bruit cardiaque (Campbell, 2007; Kellihan, 2010).

2. Diagnostic différentiel

Le diagnostic différentiel doit se faire avec les autres atteintes respiratoires chroniques des petits chiens âgés : principalement la bronchite chronique et le collapsus trachéal auxquels s'ajoutent des causes pulmonaire infectieuses ou tumorales, voire certaines endocrinopathies.

Une étude de Corcoran *et al.* (2011) portant uniquement sur des WHWT atteints de maladies pulmonaires chroniques a montré qu'il n'existe aucune différence clinique entre des chiens présentant une maladie pulmonaire seule, bronchique seule ou mixte, quelles qu'elles soient. Même les crépitements inspiratoires peuvent se retrouver lors de bronchite chronique seule. Le recours à des examens complémentaires, souvent dans un but d'exclusion, est de ce fait inévitable.

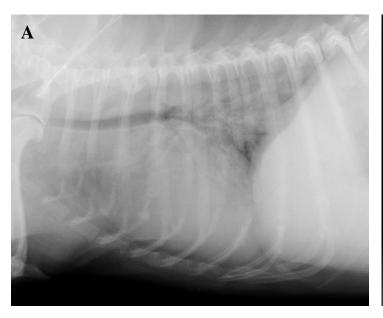
3. Examens complémentaires

3.1. Examens de routine

3.1.1. Analyses sanguines classiques

Les analyses sanguines classiques (biochimique et hématologique) sont souvent sans anomalie. Une augmentation de l'activité sérique des phosphatases alcalines peut toutefois être retrouvée (dans moins de 30 % des cas) (Corcoran *et al.*, 1999a; Johnson *et al.*, 2005; Heikkilä *et al.*, 2011) mais ceci n'est probablement pas lié à la maladie (par hypoxie hépatique) car cette augmentation est aussi retrouvée chez certains WHWT indemnes de FP (Heikkilä *et al.*, 2011).

Leur principal intérêt réside donc dans l'exclusion d'autres causes d'intolérance à l'effort (anémie, hypothyroïdie, hypoglycémie, hypokaliémie, maladies neuromusculaires, ...) (Schulman, 2010).


3.1.2. Radiographies thoraciques

Chez les animaux atteints de FP, les radiographies thoraciques sont toujours anormales avec dans près de 100 % des cas une opacification interstitielle ou bronchointerstitielle modérée à marquée (Corcoran *et al.*, 1999a; Johnson *et al.*, 2005; Corcoran *et al.*, 2011; Heikkilä *et al.*, 2011). Certains cas peuvent également présenter une opacification alvéolaire multifocale (Johnson *et al.*, 2005; Heikkilä *et al.*, 2011).

Des signes évocateurs d'HTAP (cardiomégalie droite, proéminence du tronc pulmonaire, ...) sont retrouvés dans 30 à 52 % des cas (Corcoran *et al.*, 1999a ; Johnson *et al.*, 2005).

La figure 23 présente des images radiographiques classiques de chiens atteints de FP.

Figure 23. Radiographies thoraciques de chiens atteints de fibrose pulmonaire

Opacification interstitielle à broncho-interstitielle généralisée **A.** Vue latéro-latérale. **B.** Vue ventro-dorsale : on note également des signes de cardiomégalie droite probablement secondaire à une HTAP.

Crédit : Unité d'imagerie médicale, ENVT

Malheureusement, bien qu'aucune étude n'ait réellement déterminé de sensibilité et de spécificité des radiographies thoraciques (Johnson *et al.*, 2005), on sait que celles-ci sont peu satisfaisantes. Il est ainsi difficile de différencier les clichés radiographiques de chiens atteints de FP de ceux de chiens atteints de bronchite chronique (Corcoran *et al.*, 2011). De plus, les WHWT sont des chiens à la peau épaisse avec une tendance à l'embonpoint, deux éléments pouvant mimer une opacification pulmonaire interstitielle (Heikkilä et Rajamäki, 2014). Leur principal intérêt est donc d'exclure d'autres maladies respiratoires (bronchopneumonie, tumeur pulmonaire, œdème pulmonaire, ...).

3.1.3. Test de marche pendant 6 minutes

Le principe de cet examen a été détaillé dans le paragraphe concernant la bronchite chronique canine.

Il a été établi comme élément de suivi de l'évolution sous traitement de la fibrose pulmonaire (Swimmer et Rozanski, 2011 ; Lilja-Maula *et al.*, 2014).

Lilja-Maula *et al.* (2014) ont tenté d'établir des valeurs de référence en n'étudiant que des WHWT atteints de FP ou non. Leur résultat semble alors plus intéressant dans notre cas que celui de Swimmer et Rozanski (2011) qui se sont intéressés à plusieurs races différentes et plusieurs maladies respiratoires différentes. Les WHWT sains ont ainsi marché sur 420 à 568 mètres (moyenne de 492 mètres), distance significativement plus élevée que celle des WHWT atteints de FP qui ont parcouru entre 273 et 519 mètres (moyenne de 398 mètres) (Lilja-Maula *et al.*, 2014). Ils n'ont cependant pas calculé de sensibilité ni de spécificité pour ce test. Il semble toutefois que dans un contexte clinique évocateur, un WHWT parcourant moins de 400 mètres est très probablement atteint de FP. Ce test ne permet malheureusement pas de différencier la FP de la bronchite chronique pour laquelle la distance parcourue est également diminuée (Swimmer et Rozanki, 2011).

Enfin, d'autres affections risquant d'influencer le résultat du test peuvent coexister chez un chien âgé et doivent être prises en compte : bronchite chronique, cardiopathie, arthropathies, neuropathies, etc. (Swimmer et Rozanski, 2011).

3.2. Examens spécialisés

3.2.1. Gaz du sang artériel

Heikkilä *et al.* (2011) ont trouvé 8 chiens sur 9 WHWT atteints de FP en hypoxémie c'est-à-dire présentant une PaO2 inférieure à 80 mmHg (Haskins, 2004). La moitié était même en hypoxémie marquée, avec une PaO2 inférieure à 60 mmHg (Haskins, 2004). La valeur du gradient P(A-a)O2 était aussi très augmentée chez les 9 chiens de cette même étude (autour de 50mmHg en moyenne), la norme étant une valeur inférieure à 15 mmHg (Haskins, 2004).

Ces résultats ont été retrouvés dans une étude plus récente de Lilja-Maula *et al.* (2014) où les 6 chiens WHWT étudiés atteints de FP avaient tous une PaO2 inférieure à 80mmHg et un gradient P(A-a)O2 supérieur à 15 mmHg. Toutefois, l'importance de l'hypoxémie n'a pas été reconnue comme facteur pronostique : certains chiens ont effectivement vécu très longtemps avec une valeur de PaO2 très faible ce qui s'explique probablement par l'adaptation progressive des animaux à l'hypoxémie engendrée par cette maladie.

Lors de cas non compliqués, n'étant secondaire qu'à un trouble de la diffusion, cette hypoxémie répond généralement bien à l'oxygénothérapie (quasi-normalisation) (Bach, 2008).

La mesure des gaz du sang artériels semble donc procurer une bonne estimation de la fonction pulmonaire et de la gravité de la FP chez le WHWT mais elle ne peut pas en prédire l'évolution (Heikkilä *et al.*, 2011; Lilja-Maula, 2014).

3.2.2. Bronchoscopie et LBA

Une anesthésie générale est nécessaire pour ces examens ce qui représente un risque nonnégligeable pour certains animaux atteints de FP. Selon l'expérience d'Heikkilä *et al.* (2014), elle reste toutefois envisageable chez des animaux très hypoxémiques sous réserve d'avoir une surveillance minutieuse de l'anesthésie et surtout une bonne supplémentation en oxygène avant, pendant et après la procédure.

L'examen est souvent subnormal compte tenu de l'âge des animaux, présentant uniquement de légères modifications des voies respiratoires telles que des irrégularités de la muqueuse parfois associées à des sécrétions de mucus, une bronchiectasie ou encore des processus dynamiques (collapsus trachéal, bronchomalacie) (Corcoran *et al.*, 1999a; Heikkilä *et al.*, 2011). Ces lésions sont également retrouvées lors d'autres maladies respiratoires chroniques, notamment la bronchite chronique ou le collapsus trachéal, mais elles sont alors généralement plus marquées (Corcoran *et al.*, 1999a; Corcoran *et al.*, 2011).

L'examen cytologique du produit de LBA est plus informatif. Il a d'ailleurs été récemment reconnu comme un élément diagnostique fort en médecine humaine (Heikkilä et Rajamäki, 2014).

En effet, en comparant l'analyse du LBA de 11 WHWT atteints de FP à celle de 12 WHWT indemnes, Heikkilä *et al.* (2011) ont démontré que lors de FP, la cellularité globale est significativement augmentée avec notamment d'avantage de macrophages, granulocytes neutrophiles et mastocytes.

La bronchoscopie combinée à l'analyse d'un LBA sont donc des outils diagnostiques importants, bien qu'imparfaits, dans l'élimination d'autres maladies respiratoires chroniques chez les chiens supposés atteints de FP. Ne permettant pas d'évaluer le parenchyme pulmonaire, il est toutefois impossible de s'affranchir d'autres examens d'imagerie (Heikkilä *et al.*, 2011).

3.2.3. Examen tomodensitométrique

En médecine humaine, l'examen tomodensitométrique présente une valeur prédictive positive très élevée et joue donc un rôle crucial dans le diagnostic et le pronostic de la FP. Il permet notamment de distinguer l'inflammation active (réversible) de la fibrose (irréversible) sans nécessité de biopsie pulmonaire (Johnson *et al.* 2005) et donc d'orienter le choix de traitement.

Le problème est que, malgré son grand intérêt diagnostique également reconnu en médecine vétérinaire, il requiert chez cette espèce une anesthésie générale qui peut ne pas être tolérée par tous les patients (Heikkilä et Rajamäki, 2014). Le Vet MouseTrapTM n'a pas encore été testé chez les chiens atteints de FP. Par ailleurs, son coût reste élevé et peut parfois s'avérer rédhibitoire.

Certaines images sont toutefois très évocatrices de fibrose pulmonaire, rendant cet examen intéressant pour augmenter le degré de confiance dans le diagnostic : il est en effet beaucoup plus précis que les radiographies thoraciques dans l'identification et la caractérisation des lésions pulmonaires interstitielles (Johnson *et al.*, 2005). Le tableau 4 regroupe les principales lésions retrouvées au scanner par ordre de fréquence, d'après l'examen de 10 WHWT atteints de FP par Johnson *et al.* (2005). Ces signes sont aussi retrouvés dans d'autres études cliniques avec des fréquences similaires, notamment les zones d'opacification en verre dépoli, présentes dans 100 % des cas de FP (Corcoran *et al.*, 2011; Heikkilä *et al.*, 2011). Les lésions de consolidation, bronchiectasie par traction, lignes subpleurales, épaississement interstitiel et images en nid d'abeille ne sont jamais retrouvées chez les animaux sains (Heikkilä *et al.*, 2011).

Tableau 4. Signes tomodensitométriques de la FP d'après Johnson et al. (2005)

Signe au scanner	Définition	Nombre de cas /10	Processus évoqué*
Opacité en verre dépoli	Zones d'opacification « floues » sans obscuration des vaisseaux	10	Inflammation active
Epaississement interstitiel	Epaississement anormal de l'interstitium de l'espace péribroncho-vasculaire	6	Fibrose
Bande parenchymateuse	Bande d'opacité de plusieurs millimètres de large et plusieurs centimètres de long	6	
Ligne sous-pleurale	Ligne opaque de plusieurs millimètres d'épaisseur parallèle, proche de la surface pleurale	4	
Atélectasie	Consolidation pulmonaire avec diminution du volume d'un ou plusieurs lobe(s)	4	
Consolidation pulmonaire	Atténuation pulmonaire avec obscuration des vaisseaux pulmonaires. Bronchogrammes visibles.	2	
Image en nid d'abeilles	Espaces kystiques aériques de plusieurs millimètres à centimètres de diamètre	1	Fibrose
Bronchiectasie	Dilatation bronchique localisée ou diffuse	1	
Bronchiectasie par traction	Bronchiectasie avec un contour bronchique irrégulier	1	Fibrose
Signe d'interface	Interfaces anormales en regard des bords pulmonaires	1	

^{*} basé sur des données de médecine humaine.

3.2.4. Échocardiographie

L'examen échocardiographique est surtout justifié lors de suspicion d'HTAP, qui n'est pas rare lors de FP (Schober et Baade, 2006). Il a été détaillé dans le paragraphe sur la BCC.

Elle permet notamment d'exclure une origine cardiaque de la toux ou de l'intolérance à l'effort, bien que les cardiopathies primaires soient rares chez le WHWT (Schober et Baade, 2006). C'est pourquoi des signes échocardiographiques d'HTAP chez le WHWT sont très évocateurs d'une FP sous-jacente.

3.2.5. Biopsies pulmonaires

L'analyse histopathologique est le seul examen permettant un diagnostic de certitude. Elle n'est que rarement réalisée du vivant de l'animal de par les risques non-négligeables de la réalisation de biopsies pulmonaires. Leurs principaux inconvénients sont le caractère invasif de l'intervention ainsi que la nécessité d'une anesthésie générale. Par ailleurs, en l'absence de traitement spécifique connu à l'heure actuelle, leur intérêt clinique est discutable (Heikkilä et Rajamäki, 2014).

Dans une étude rétrospective portant sur 232 chiens ayant subi une chirurgie thoracique, la mortalité associée à la biopsie pulmonaire (lobectomie partielle) en elle-même est estimée à environ 5 % (Meakin *et al.*, 2013). Les auteurs ont toutefois déterminé que cet acte était un facteur de risque important de développement d'un pyothorax postopératoire qui augmente considérablement la mortalité (taux estimé à 67 %) (Meakin *et al.*, 2013).

De plus, Lobetti *et al.* (2001) ont rapporté 5 cas de fibrose pulmonaire de chiens non-WHWT dont 3 ont subi des biopsies pulmonaires. L'un, âgé de 3 ans, est mort pendant la procédure et les deux autres ont été euthanasiés peu de temps après l'intervention.

Ainsi, la plupart des études décrivant l'aspect histopathologique de la FP se basent sur des échantillons prélevés lors d'autopsies (Norris *et al.*, 2005 ; Syrjä *et al.*, 2013).

3.3. Examens réservés au milieu hospitalier universitaire

Aucun examen *ante-mortem* ne permet actuellement un diagnostic de certitude de FP, ni une différenciation claire avec la bronchite chronique. Le développement d'un tel test est donc l'objectif actuel en recherche.

3.3.1. Marqueurs génétiques

Une étude de Krafft *et al.* (2013) a récemment mis en évidence l'expression exagérée de certains gènes chez des WHWT atteints de FP en les comparant à des WHWT sains. De plus, la concentration sérique de l'un d'entre eux, le gène CCL2 (chemokine ligand 2, responsable d'une chémo-attraction de monocytes, lymphocytes T, cellules dendritiques et fibrocytes) est significativement plus élevée chez les WHWT atteints de FP. Ces résultats bien que prometteurs pour la découverte d'un biomarqueur sérique de FP nécessitent toutefois d'avantage d'investigations.

3.3.2. Propeptide amino-terminal du procollagène de type III (PIIINP)

Le dosage de ce peptide se justifie par le fait que l'épaississement interstitiel observé lors de FP est principalement dû à un dépôt de fibres de collagène de type III (Norris *et al.*, 2005 ; Syrjä *et al.*, 2013). Or, le PIIINP est un marqueur de la synthèse de ce type de collagène (Heikkilä *et al.*, 2013). Heikkilä *et al.* (2013) ont comparé les concentrations dans le sérum et le produit de LBA de 15 chiens atteints de FP, 19 chiens atteints de bronchite chronique, 13 chiens atteints de bronchopneumonie éosinophilique et 25 chiens sains.

Il s'avère que les concentrations sériques de PIIINP ne diffèrent pas entre les quatre groupes. En revanche, les concentrations dans le produit de LBA sont normales (soit similaires à celles des chiens sains) pour les animaux atteints de bronchite chronique et significativement élevées chez les chiens atteints de FP et ceux atteints de bronchopneumonie éosinophilique (Heikkilä *et al.*, 2013). Le dosage du PIIINP dans le produit de LBA semble donc être un bon marqueur de maladie pulmonaire interstitielle chez le chien, sans pouvoir la caractériser.

Heikkilä *et al.* (2013) ont déterminé que pour la différenciation entre FP et bronchite chronique, la sensibilité du dosage de la concentration en PIIINP dans le produit de LBA est de 65 % et la spécificité de 95 % pour une valeur seuil de 0.1 µg/L. Ainsi, dans le cadre d'une forte suspicion de FP, ce test est très intéressant.

Le test disponible pour doser le PIIINP dans le produit de LBA a été développé pour la médecine humaine mais sa transposition est possible dans l'espèce canine. Son principal inconvénient réside dans la nécessité d'une anesthésie générale pour récolter le LBA (Heikkilä *et al.*, 2013).

3.3.3. Endothéline-1 (ET1)

En médecine humaine, l'ET1 est un marqueur reconnu de FP (Heikkilä et Rajamäki, 2014).

Krafft *et al.* (2011) ont comparé les concentrations en ET1 dans le sérum et le produit de LBA de 12 chiens atteints de FP, 10 chiens atteints de bronchite chronique, 6 chiens atteints de bronchopneumonie éosinophilique, 13 WHWT sains et 9 Beagles sains.

La concentration sérique en ET1 était significativement plus élevée chez les chiens atteints de FP que chez tous les autres groupes (Krafft *et al.*, 2011). Les auteurs ont déterminé que pour la différenciation entre FP et bronchite chronique, la concentration sérique en ET1 a une sensibilité de 100 % et une spécificité de 81,2 % pour une valeur seuil de 1,8 pg/mL. Dans le produit de LBA, la concentration en ET1 est dosable uniquement chez les chiens atteints de FP.

La combinaison des dosages sérique et du produit de LBA augmente donc fortement la spécificité du test.

Ce dosage semble donc très intéressant dans la différenciation de la FP avec d'autres maladies respiratoires chroniques (notamment la bronchite chronique), surtout si l'on combine un dosage sérique à un dosage de produit de LBA. Ce test est disponible en médecine humaine et son utilisation chez le chien a été validée (Krafft *et al.*, 2011). Le principal problème réside dans les conditions pré-analytiques, l'ET1 étant une protéine labile (centrifugation à froid, congélation des échantillons avant analyse) ; de plus, le prélèvement de LBA nécessite une anesthésie générale.

F.Traitement

Il n'existe pas de traitement efficace contre la FP du chien à l'heure actuelle. Les seules mesures possibles ont donc pour but de réduire l'expression des signes cliniques.

Il faut également prendre en charge les complications ou autres maladies associées car leur résolution peut améliorer les conditions de vie de l'animal.

1. Traitement médical

1.1. Glucocorticoïdes

Bien qu'ils ne soient plus recommandés pour le traitement de la FP en médecine humaine, leur utilisation peut sembler intéressante chez le chien de par le fait que tous les animaux atteints de FP subissant un examen tomodensitométrique semblent présenter une opacité en verre dépoli, témoin d'une inflammation active en médecine humaine (Johnson *et al.*, 2005). Par ailleurs, l'un de leurs effets biologiques est d'inhiber la prolifération des fibroblastes et la synthèse de collagène (Cohn, 2010a). De plus, l'expérience d'Heikkilä et Rajamäki (2014) montre qu'ils semblent améliorer la condition de certains chiens. Corcoran *et al.* (1999a) précisent également que plusieurs animaux atteints de FP répondent à une association entre la prednisolone et un bronchodilatateur.

Pour une utilisation chronique de glucocorticoïdes, il est préférable d'utiliser la prednisolone (Cohn, 2010a). Il n'existe pas de protocole standardisé pour la gestion de la FP mais le traitement *per os* peut être commencé à raison de 0,5 à 2 mg/kg en une ou deux prises quotidiennes. Cette dose doit être diminuée progressivement jusqu'à atteindre la dose minimale efficace et minimiser ainsi le risque d'apparition d'effets secondaires (décrits dans le paragraphe II).

Par ailleurs, les animaux présentant une hypoxémie chronique sont plus à risque de développer des ulcères gastro-intestinaux cortico-induits (Heikkilä et Rajamäki, 2014). L'ajout d'un antiacide (inhibiteur de la pompe à protons ou antihistaminique H2) peut alors être intéressant. Les principaux antiacides utilisés en médecine vétérinaire sont la cimétidine à la dose de 5 mg/kg *per os* trois fois par jour, la ranitidine à la dose de 2 mg/kg trois fois par jour et l'oméprazole à la dose de 1 mg/kg *per os* 1 fois par jour.

En cas d'effets secondaires importants, la voie inhalée peut être utilisée (Roels *et al.*, 2014). Elle est administrée à la même posologie que pour les autres maladies présentées auparavant.

1.2. Bronchodilatateurs

Une combinaison entre la théophylline et les corticostéroïdes était autrefois recommandée chez les chiens atteints de FP et régulièrement utilisée dans les études cliniques (Corcoran *et al.*, 1999a; Heikkilä et Rajamäki, 2014). Les bénéfices de l'utilisation des bronchodilatateurs dans les cas de FP est toutefois incertaine.

Les posologies et effets secondaires de ces médicaments sont décrits dans le paragraphe sur la bronchite chronique.

1.3. Antitussifs

Ils peuvent être utilisés si la toux est sèche et irritante (Heikkilä et Rajamäki, 2014).

1.4. Antifibrotiques

L'antifibrotique suscitant le plus d'intérêt actuellement en médecine humaine est la pirfenidone. Elle est déjà utilisée en Asie et en Europe. En plus de ses propriétés antifibrotique, elle est antioxydante et anti-inflammatoire. Chez l'homme, elle a prouvé une diminution de la détérioration de la fonction pulmonaire mais aucune influence sur la durée de survie (Heikkilä et Rajamäki, 2014). La sureté de ce médicament n'a, par ailleurs, pas encore été testée chez le chien.

1.5. N-acétylcystéine

La N-acétylcystéine est un antioxydant qui a longtemps été proposé dans le traitement de la fibrose pulmonaire en médecine humaine.

Les résultats concernant son utilisation en médecine humaine, surtout lorsque celle-ci est couplée à des glucocorticoïdes et à l'azathioprine, sont toutefois assez contradictoires : une étude a suggéré une bonne efficacité de cette combinaison (Demedts *et al.*, 2005) alors qu'une autre étude plus récente a montré qu'elle augmentait le risque de mortalité (Raghu *et al.*, 2012).

Malgré le manque de preuves à l'heure actuelle concernant ses bienfaits dans l'espèce canine, l'absence d'effets secondaires notables et les données en médecine humaine en font l'un des traitements recommandés. La combinaison exposée ci-dessus devrait toutefois surement être évitée (Heikkilä et Rajamäki, 2014).

Roels *et al.* (2014) rapportent le cas d'un chien atteint de FP traité avec la N-acétylcystéine à la dose de 15 mg/kg deux fois par jour, associée au propionate de fluticasone et à la théophylline. Ce chien a présenté une bonne amélioration clinique durant les six premiers mois du suivi avec toutefois une aggravation des lésions pulmonaires à l'examen tomodensitométrique de contrôle (quatre mois après la mise en place du traitement).

2. Traitement hygiénique

Comme pour toutes les maladies respiratoires chroniques, des mesures hygiéniques sont primordiales. Le principal point d'attaque lors de FP est l'obésité, fréquente chez le WHWT (Heikkilä et Rajamäki, 2014). En effet, compte tenu de l'impact du surpoids déjà évoqué sur la fonction respiratoire (Manens *et al.*, 2012; Manens *et al.*, 2014), une perte de poids est probablement bénéfique chez les chiens obèses atteints de FP.

3. Traitement des complications

3.1. HTAP

Le traitement de l'HTAP a été détaillé dans le paragraphe sur la bronchite chronique canine. D'après l'expérience de Heikkilä et Rajamäki (2014), le sildénafil à la dose de 1 mg/kg trois fois par jour peut améliorer la tolérance à l'effort et l'état général des chiens atteints de FP.

3.2. Surinfections bactériennes

Également décrite dans le paragraphe sur la bronchite chronique canine, la gestion des surinfections bactériennes se base sur une antibiothérapie raisonnée, idéalement basée sur un antibiogramme.

G. Pronostic

Contrairement aux autres maladies respiratoires chroniques, le traitement médical diminue l'expression clinique de la FP mais ne permet pas de ralentir sa progression ce qui lui confère un pronostic sombre.

De plus, aucun examen complémentaire n'a encore montré d'intérêt dans la détermination du pronostic de la FP (Lilja-Maula *et al.*, 2014).

L'espérance de vie après l'apparition des signes cliniques est très variable d'un chien à l'autre (Corcoran *et al.*, 1999a; Syrjä *et al.*, 2013; Lilja-Maula *et al.*, 2014). En prenant compte uniquement des WHWT dont la mort était exclusivement imputable à la FP, Lilja-Maula *et al.* (2014) ont déterminé que la médiane de survie se situait à 32 mois après l'apparition des signes cliniques (intervalle : 2 à 51 mois) et 11 mois après le diagnostic (intervalle : 0 à 40 mois). Ces résultats sont toutefois difficiles à interpréter compte tenu du caractère non standardisé des protocoles thérapeutiques mis en place.

VI. BRONCHOPNEUMONIE ÉOSINOPHILIQUE DU CHIEN

A. Définition de la maladie

La bronchopneumonie éosinophilique (BPE), relativement moins fréquente que les précédentes, se traduit par une infiltration éosinophilique des voies respiratoires basses et du parenchyme pulmonaire (Clercx et Peeters, 2007).

B. Étiopathogénie

La cause de la BPE n'est pas encore connue. Cependant, bien qu'aucun allergène précis n'ait été mis en évidence à l'heure actuelle, un phénomène d'hypersensibilité est suspecté (Clercx *et al.*, 2000; Clercx *et al.*, 2002).

La pathogénie est toutefois en partie élucidée. La maladie passe par une augmentation sélective en lymphocytes T CD4+ et une diminution sélective en lymphocytes T CD8+ par la voie Th2 au sein du bas appareil respiratoire (Clercx et Peeters, 2007). L'étude des cytokines a montré qu'il semble y avoir, suite à cela, un recrutement de granulocytes éosinophiles et de monocytes dans les voies respiratoires. Une stimulation de la collagénolyse et de la protéolyse au sein des voies respiratoires a également été mise en évidence, conduisant à un remodelage et/ou une destruction des voies respiratoires et du parenchyme pulmonaire (Clercx et Peeters, 2007).

C. Épidémiologie

Les animaux affectés sont souvent des jeunes adultes : l'âge au moment du diagnostic se situe entre 7 mois et 11 ans (Corcoran *et al.*, 1991 ; Clercx *et al.*, 2000 ; Clercx *et al.*, 2002 ; Rajamäki *et al.*, 2002 ; Mesquita *et al.*, 2014) avec un âge moyen entre 4 et 6 ans (Clercx et Peeters, 2007). D'après Clercx *et al.* (2000), les signes cliniques apparaissent entre l'âge de 6 mois et 8 ans.

Certaines études semblent mettre en évidence une prédisposition pour le Siberian Husky (Clercx *et al*, 2000; Clercx *et al*, 2002) et le Malamute d'Alaska (Clercx *et al*., 2000) mais celle-ci n'est pas clairement retrouvée dans d'autres (Corcoran *et al*., 1991; Rajamäki *et al*, 2002). La maladie peut survenir chez de nombreuses races, de petit comme de grand format (Corcoran *et al*., 1991; Clercx *et al*, 2000; Clercx *et al*, 2002; Rajamäki *et al*, 2002; Mesquita *et al*., 2014).

Enfin, il semblerait que les femelles soient plus à risque de développer une BPE (Clercx *et al.*, 2000 ; Clercx *et al.*, 2002 ; Rajamäki *et al.*, 2002).

D. Signalement et signes cliniques

Les signes cliniques sont généralement présents depuis plusieurs semaines à plusieurs années avant la consultation. Les chiens atteints de BPE sont souvent en bon état général malgré tout (Corcoran et al., 1991; Clercx et al., 2000; Rajamäki et al., 2002; Mesquita et al., 2014).

1. Signes cliniques fréquents

Les signes les plus fréquents lors de BPE sont (Corcoran *et al.*, 1991 ; Clercx *et al.*, 2000 ; Rajamäki *et al.*, 2002) :

- Une toux chronique dans presque 100 % des cas. Elle est souvent décrite comme rauque, bruyante et généralement suivie de raclements de gorge et de nausées ;
- Une dyspnée restrictive :
- Une intolérance à l'effort.

2. Autres signes cliniques

Les chiens atteints de BPE peuvent également présenter :

- Un jetage, rapporté dans environ 50 % des cas dans une seule étude (Clercx et al, 2000) ;
- Un prurit accompagné ou non de lésions cutanées rapporté chez certains chiens d'une seule étude (Corcoran *et al.*, 1991) ;
- Une hyperthermie est parfois rapportée bien que son réel lien avec la BPE reste à éclaircir (Rajamäki *et al.*, 2002).

Ces signes peuvent être dus à une complication ou une autre maladie concomitante.

3. Complications

Les complications associées à la BPE sont relativement rares (Clercx et Peeters, 2007). On peut toutefois retrouver :

- Une rhinite, infectieuse ou éosinophilique, probablement à l'origine du jetage retrouvé dans l'étude de Clercx *et al.* (2000) ;
- Une surinfection bactérienne, peu fréquente mais possible lors de BPE comme pour toute maladie bronchopulmonaire chronique (Dear, 2014).

E. Démarche diagnostique

Une BPE doit être suspectée chez tout animal adulte d'âge moyen présentant une toux chronique. Ces animaux ont souvent été médicalisés auparavant (Clercx et al., 2000; Rajamäki et al, 2002); si tel est le cas, une réponse au moins partielle aux glucocorticoïdes doit renforcer cette suspicion (Clercx et al., 2000).

1. Examen clinique

En l'absence d'autre maladie intercurrente, et outre certains signes respiratoires pouvant être retrouvés lors de la consultation (toux, jetage, dyspnée), les animaux atteints de BPE sont présentés en bon état général (Clercx *et al.*, 2000).

L'auscultation pulmonaire est normale jusqu'à dans 40 % des cas (Clercx *et al.*, 2000). Dans le cas contraire, on peut retrouver simplement des bruits respiratoires augmentés ou parfois des bruits adventices (crépitements associés ou non à des sifflements expiratoires) (Clercx *et al.*, 2000; Hawkins, 2013b).

2. Diagnostic différentiel

Les principales maladies à exclure dans un contexte de BPE sont : la bronchite chronique, une infection pulmonaire (bactérienne, parasitaire, fongique, ...), une affection tumorale diffuse, éventuellement une fibrose pulmonaire (Clercx et Peeters, 2007 ; Anderson-Wessberg, 2010).

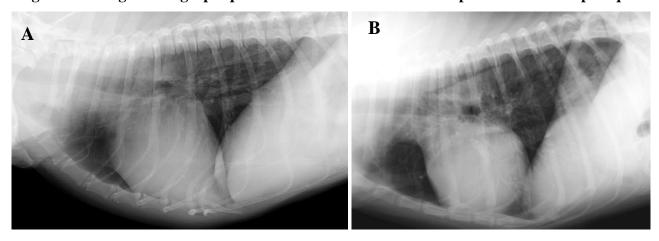
Il faut également considérer la granulomatose éosinophilique pulmonaire, notamment décrite chez le Siberian Husky et le Malamute d' Alaska (Calvert *et al.*, 1988). Cette maladie est proche de la BPE dans sa forme respiratoire mais représente un pronostic plus sombre (Clercx *et al*, 2000).

3. Examens complémentaires

3.1. Examens de routine

3.1.1. Analyses sanguines classiques

L'examen biochimique se révèle généralement sans anomalie (Rajamäki et al, 2002).


L'hémogramme présente une leucocytose modérée à marquée dans la moitié des cas environ, une éosinophilie dans 50 à 60 % des cas et parfois une neutrophilie (Clercx *et al.*, 2000; Rajamäki *et al.*, 2002). On peut également retrouver une basophilie (Rajamäki *et al.*, 2002). L'absence d'éosinophilie ne permet donc en aucun cas d'exclure la BPE.

3.1.2. Radiographies thoraciques

Les radiographies thoraciques présentent des anomalies dans 100 % des cas (figure 24). On observe en effet une opacification pulmonaire broncho-interstitielle diffuse, parfois modérée mais le plus souvent marquée (Clercx *et al.*, 2000 ; Rajamäki *et al.*, 2002).

On peut également retrouver des opacifications alvéolaires jusqu'à dans 40 % des cas, une opacification péribronchique dans 20 à 40 % ou encore des signes de bronchiectasie (fréquente dans les cas de BPE chroniques) dans environ 25 % des cas (Clercx *et al.*, 2000).

Figure 24. Images radiographiques de chiens atteints de bronchopneumonie éosinophilique

A. Opacification broncho-interstitielle marquée à majeure. – *Crédit : Unité d'imagerie médicale, ENVT*

Elles permettent également d'exclure d'autres causes de toux chronique. Par exemple, la granulomatose éosinophilique pulmonaire qui présente des opacifications nodulaires avec parfois un épanchement pleural et une adénopathie trachéobronchique associés (Clercx *et al*, 2000). Certaines tumeurs peuvent également être exclues à l'exception des formes infiltrantes pouvant donner des images similaires (Cohn, 2010b). Enfin, bien que la bronchite chronique présente des anomalies semblables, elles sont généralement moins marquées que lors de BPE (Clercx *et al.*, 2000).

3.1.3. Exclusion des causes parasitaires

Cette étape est indispensable car le traitement de la BPE repose sur des doses immunosuppressives de corticoïdes (Clercx et Peeters, 2007) et parce que les infections parasitaires miment généralement les signes cliniques et paracliniques (éosinophilie, inflammation respiratoire éosinophilique) de la BPE.

Les principaux parasites pouvant infecter les voies respiratoires des chiens sont : *Oslerus osleri*, *Capillaria aerophila*, *Paragonimus kellicotti*, *Crenosoma vulpis* (Clercx et Peeters, 2007 ; Ettinger, 2010 ; Hawkins, 2013b). Certains parasites digestifs tel que *Toxocara canis* peuvent également donner des signes respiratoires associés à une éosinophilie et un infiltrat inflammatoire éosinophilique des bronches lors de migrations larvaires (Hawkins, 2013b).

Enfin, l'angiostrongylose (*Angiostrongylus vasorum*) et la dirofilariose (*Dirofilaria immitis*) peuvent également donner un tableau clinique similaire et il est donc important de les exclure elles aussi (Cohn, 2010b; Hawkins, 2013b).

La coprologie par flottaison ou la méthode de Baermann permettent de diagnostiquer la plupart de ces maladies parasitaires (Cohn, 2010b; Ettinger, 2010; Hawkins, 2013b). Cependant, les résultats faussement négatifs ne sont pas rares (30 à 70 % des cas) c'est pourquoi il est recommandé d'exécuter ce test à plusieurs reprises, en général 3 fois (Clercx et Peeters, 2007; Hawkins, 2013b). Les œufs, larves ou adultes peuvent, dans certains cas, également être visualisés lors de l'examen cytologique du LBA mais là encore, un résultat négatif ne permet pas d'exclure la maladie. De ce fait, certains auteurs choisissent même d'initier systématiquement un traitement antiparasitaire (Clercx et al., 2000).

Une étude récente de Stillman *et al.* (2014) rapporte de très bonnes sensibilité (98,9 %) et spécificité (99,3 %) du test SNAP 4Dx (Laboratoire IDEXX) pour la recherche de *Dirofilaria immitis*.

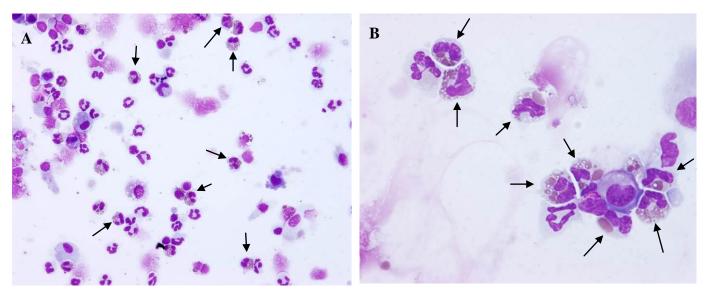
3.2. Examens spécialisés

3.2.1. Bronchoscopie et LBA

Ces sont des examens essentiels dans le diagnostic de BPE et l'exclusion d'autres maladies.

D'après les études de Clercx et al. (2000) et Rajamäki et al. (2002), la bronchoscopie permet de mettre en évidence des lésions non spécifiques telles que :

- La présence d'une quantité modérée à importante de sécrétions mucopurulentes (dans environ 75 % des cas);
- Des modifications de la muqueuse : épaississement et irrégularités des parois bronchiques (dans 20 à 50 % des cas) ;
- Une hyperémie marquée (dans environ 30 % des cas);
- Moins souvent un collapsus dynamique des voies respiratoires (dans 10 à 45 % des cas).


Dans de rares cas, l'examen bronchoscopique peut toutefois se révéler normal : c'était le cas chez 1 chien sur les 17 examinés dans l'étude de Rajamäki *et al.* (2002).

L'examen cytologique a été décrit sur des prélèvements récoltés par LBA ou par cytobrossage des parois bronchiques (via la sonde de bronchoscopie). Cette dernière méthode de prélèvement semble toutefois donner une analyse moins sensible dans le cadre de BPE (Clercx *et al.*, 2002). Les principales anomalies retrouvées sont :

- Une forte augmentation de la cellularité dans tous les cas avec souvent plus de 2000 cellules par microlitre (Clercx *et al.*, 2002 ; Rajamäki *et al.*, 2002). La valeur normale dans le LBA du chien étant de 200 à 400 cellules/μL (Hawkins *et al.*, 1990 ; Rajamäki *et al.*, 2001) ;
- Un infiltrat inflammatoire majoritairement éosinophilique (figure 25). L'intensité de cet infiltrat est variable mais la majorité des cas présente un pourcentage de granulocytes éosinophiles supérieur à 50 % (parfois jusqu'à plus de 90 %). La proportion normale de granulocytes éosinophiles dans le LBA du chien est de 5 à 10 % (Hawkins *et al.*, 1990; Rajamäki *et al.*, 2001). Cependant, certains chiens sains, notamment des Siberian Husky, peuvent avoir un LBA contenant jusqu'à 20 % de granulocytes éosinophiles (Hawkins *et al.*, 1990). Un LBA contenant une proportion modérément élevée de granulocytes éosinophiles (entre 10 et 20 %) doit donc être interprété avec précautions;
- Une augmentation du pourcentage de neutrophiles (Clercx et Peeters, 2007), non-dégénérés en l'absence de surinfection bactérienne. On considère qu'un LBA témoigne d'une infiltration neutrophilique des voies respiratoires lorsque le pourcentage de granulocytes neutrophiles excède 10 % (Hawkins *et al*, 1990).

Le LBA permet également de diagnostiquer une infection bactérienne par sa mise en culture ou encore une affection parasitaire lors de son examen cytologique (Andreasen, 2003). Rappelons que cette étape est primordiale compte tenu du caractère immunosuppressif du traitement (Clercx et Peeters, 2007).

Figure 25. Examen cytologique après cytocentrifugation du LBA d'un chien atteint de bronchopneumonie éosinophilique

Infiltrat inflammatoire éosinophilique majeur (flèches). On visualise également quelques neutrophiles et macrophages.

A. MGG, x400. **B.** MGG, x1000.

Crédit : Laboratoire Central de Biologie Médicale, ENVT

En cas de suspicion de rhinite associée à la BPE, la réalisation d'une rhinoscopie est également recommandée (Clercx et Peeters, 2007). Cet examen peut mettre en évidence une muqueuse congestionnée et œdématiée, des sécrétions muqueuses à muco-purulentes et parfois des proliférations polypoïdes (Clercx *et al.*, 2000). L'examen cytologique révèle généralement un infiltrat éosinophilique (Clercx *et al.*, 2000).

3.2.2. Analyse des gaz du sang artériel

Rajamäki *et al.* (2002) ont analysé les gaz du sang artériel de chiens atteints de BPE. En les comparant à des chiens sains, ils ont trouvé que leur PaO2 était diminuée et le gradient (A-a) augmenté de façon significative, bien que restant dans les intervalles de référence. Seulement quelques chiens (3 sur les 20 étudiés) présentaient une légère hypoxémie avec une PaO2 inférieure à 86,5 mmHg (Rajamäki *et al.*, 2002).

3.2.3. Examen tomodensitométrique

Une étude récente de Mesquita *et al.* (2014) décrit les lésions observées au scanner chez 15 chiens atteints de BPE. Ils ont surtout observé des lésions pulmonaires péribronchiques avec notamment :

- Un épaississement des parois bronchiques dans 87 % des cas (13/15);
- Des foyers d'opacité en verre dépoli dans 73 % des cas (11/15) ;
- Des signes d'obstruction par du mucus ou des débris dans 73 % des cas (11/15);
- Des signes de consolidation pulmonaire dans 67 % des cas (10/15);
- Une lymphadénopathie intra-thoracique dans 67 % des cas (10/15);
- Des signes de bronchiectasie dans 60 % des cas (9/15);
- Des opacifications nodulaires dans 33 % des cas (5/15).

Un chien sur les 15 avait un examen normal. L'absence de lésion à l'examen tomodensitométrique ne permet donc pas d'exclure une BPE (Mesquita *et al.*, 2014).

3.3. Examens réservés au milieu hospitalier universitaire

3.3.1. Biomarqueurs PIIINP et ET1

Le dosage de ces marqueurs a déjà été évoqué auparavant, dans la partie sur la fibrose pulmonaire. Le dosage du PIIINP dans le produit de LBA permet de mettre en évidence une maladie pulmonaire interstitielle, en l'occurrence une BPE ou une FP par exemple (Heikkilä *et al.*, 2013). L'ET1 semble cependant plus spécifique de la FP, son dosage dans le sang et le produit de LBA restant négatif chez les chiens atteints de BPE (Krafft *et al.*, 2011).

3.3.2. Pléthysmographie barométrique du corps entier

Cet examen n'a pas encore été décrit chez des chiens atteints de BPE. Clercx et Peeters (2007) lui voient cependant un réel intérêt de par sa capacité à mettre en évidence une hyperréactivité bronchique, probablement présente chez la plupart des chiens atteints de BPE.

F.Traitement

1. Glucocorticoïdes

L'administration de glucocorticoïdes à dose immunosuppressive est la base actuelle du traitement contre la BPE. Dans chaque étude, la molécule utilisée est la prednisolone. Le protocole varie ensuite selon les auteurs mais la dose initiale est toujours 1 mg/kg *per os* deux fois par jour ; cette dose est d'abord divisée par deux toutes les 1 à 2 semaines puis ajustée progressivement jusqu'à attendre la dose minimale efficace (Clercx *et al.*, 2000 ; Clercx *et al.*, 2002 ; Rajamäki *et al.*, 2002). Celle-ci se situe généralement entre 0,1 et 1 mg/kg tous les 2 jours (Clercx *et al.*, 2000 ; Clercx *et al.*, 2002) et est atteinte en 3 à 12 semaines (Clercx *et al.*, 2002).

Il n'y a, pour le moment, que peu de publications évoquant un traitement de la BPE à base de corticoïdes par voie inhalée. L'étude de Bexfield *et al.* (2006) présente la prise en charge de 3 chiens atteints de BPE par le dipropionate de béclométasone et du propionate de fluticasone aux doses respectives de 250 µg deux fois par jour et 125 µg deux fois par jour. Chez deux chiens, les signes cliniques ont totalement disparu sans occurrence d'effets secondaires. Chez le troisième, qui recevait aussi une dose systémique (contrairement aux deux autres), la toux a bien diminué mais une légère polyuro-polydypsie a persisté (Bexfield *et al.*, 2006).

Deux études portant sur des chiens sains ont montré que le propionate de fluticasone diminue considérablement le risque d'apparition d'effets secondaires bien qu'il garde une action inhibitrice sur l'axe hypothylamo-hypophysaire (Cohn *et al.*, 2008; Melamies *et al.*, 2012).

Les propriétaires doivent être tenus informés des possibles effets secondaires liés à la corticothérapie (polyphagie, polyuro-polydypsie, halètement, prise de poids, ...) qui sont plus fréquents lors de traitement par voie orale que par voie inhalée (Bexfield *et al.*, 2006 ; Cohn *et al.*, 2008 ; Cohn, 2010a ; Melamies *et al.*, 2012). Ce dernier est toutefois plus onéreux, surtout chez les grands chiens.

2. Antibiotiques

Leur utilisation peut se justifier dans 2 cas de figure :

- En cas de suspicion ou de mise en évidence d'un phénomène infectieux via, par exemple, l'examen clinique, une culture positive, la visualisation de matériel purulent dans les bronches à l'analyse cytologique, une opacification alvéolaire à la radiographie, etc. (Clercx *et al.*, 2002). Un traitement antibiotique doit alors être entrepris avant la mise en place de la corticothérapie;

- Rajamäki *et al.* (2002), de par le caractère immunosuppresseur du traitement de la BPE, ont proposé d'ajouter systématiquement une antibiothérapie prophylactique pendant les 2 premières semaines de traitement. Cette démarche n'est pas retrouvée dans les études de Clercx *et al.* (2000 et 2002).

3. Traitement antiparasitaire

Compte-tenu de la faible sensibilité des tests de détection des parasites pulmonaires, Clercx *et al.* (2000) proposent la mise en place systématique d'un traitement antiparasitaire.

La molécule la plus adaptée est le fenbendazole à la dose de 50 mg/kg une fois par jour pendant 14 jours. Cet antiparasitaire présente en effet l'avantage d'être efficace contre tous les parasites des voies respiratoires du chien (Hawkins, 2013b) ainsi que contre *Angiostrongylus vasorum* (Cohn, 2010b).

G. Pronostic

Contrairement à la granulomatose éosinophilique pulmonaire pour laquelle le pronostic est réservé voire sombre (Clercx *et al.*, 2000), celui de la bronchopneumonie éosinophilique est généralement bon. Le traitement permet en effet une amélioration nette des signes cliniques pour 80 à 90 % des chiens (Clercx *et al.*, 2000; Rajamäki *et al.*, 2002).

Même si dans certains cas, l'administration de glucocorticoïdes doit être maintenue à vie, elle peut parfois être interrompue.

Le taux de rechute après l'arrêt du traitement n'est toutefois pas négligeable : Clercx *et al.* (2000) rapportent 8 rechutes sur les 11 chiens (73 %) pour qui le traitement a été interrompu. Ce résultat est également retrouvé dans l'étude de Rajamäki *et al.* (2002) où 60 % des chiens ont rechuté après l'arrêt du traitement (6 cas sur 10).

DEUXIÈME PARTIE

ÉLABORATION DES DOCUMENTS D'INFORMATIONS MÉDICALES SUR LES MALADIES RESPIRATOIRES CHRONIQUES DU CHIEN ET DU CHAT

I. INTRODUCTION

La communication est une facette quotidienne et essentielle de presque toutes les professions médicales (Cornell et Kopcha, 2007). Or, il a été prouvé qu'une mauvaise communication est l'une des principales sources d'insatisfaction du client et d'erreurs ou de non-observance des traitements, que ce soit en médecine humaine (Abood, 2007; Adams et Frankel, 2007) ou vétérinaire (Coe *et al.*, 2008; Lue *et al.*, 2008). A titre d'exemple, Lue *et al.* (2008) ont démontré qu'une communication efficace lors de la consultation pouvait augmenter de 40 % le nombre de propriétaires prêts à suivre les indications de leur vétérinaire.

Cornell et Kopcha (2007) exposent l'intérêt d'adopter un rôle de collaborateur au cours des consultations. Dans cette conformation, le vétérinaire informe et conseille le propriétaire en explicitant son opinion professionnelle. La participation active du propriétaire est sollicitée ce qui favorise une prise de décision partagée (Cornell et Kopcha, 2007).

Cette approche est considérée comme la meilleure en termes de communication pour les deux parties. Ceci est encore plus vrai pour la gestion de maladies chroniques où la prise de décision partagée est primordiale (Abood, 2007). En effet, cela permet au propriétaire d'avoir toutes les cartes en mains pour adapter le traitement au cas spécifique de son animal et donc, de plus facilement y adhérer (Abood, 2007). L'observance du traitement et des recommandations prescrits par le vétérinaire ne s'en retrouve que meilleure.

Cette approche de la communication médicale a déjà prouvé son efficacité en médecine humaine où les praticiens appliquant cette méthode obtiennent de meilleurs scores dans les enquêtes de satisfaction des patients (Adams et Frankel, 2007).

Par ailleurs, les propriétaires recherchent de plus en plus à obtenir des informations médicales à propos des maladies animales et de leurs traitements (Coe *et al.*, 2008; Kogan *et al.*, 2008). Adopter cette approche collaborative et informative évite que ceux-là se tournent vers des sources moins fiables (internet, éleveurs, animaleries, etc.), démarche pouvant s'avérer néfaste pour leur relation avec le vétérinaire (Coe *et al.*, 2008).

Si les informations procurées par le vétérinaire peuvent être transmises par l'oral, ce mode de communication présente des défauts. Tout d'abord, comme le montre la figure 26, le message verbal subit une perte d'information lors de sa transmission (Béguin, 2012). On estime ainsi que seulement 20 % du message initial sera retenu par son récepteur.

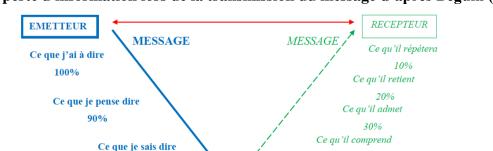
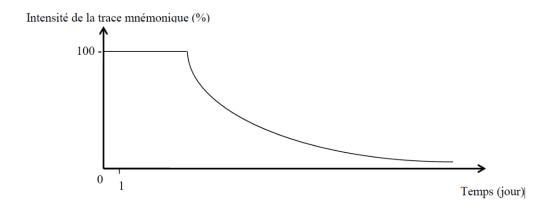


Figure 26. La perte d'information lors de la transmission du message d'après Béguin (2012)

80%

Ce que je dis effectivement 70%

en bleu et gras : la perte d'informations propre à l'émetteur en vert et italique : la perte d'informations propre au récepteur


40%

Ce qu'il écoute

Ce qu'il entend

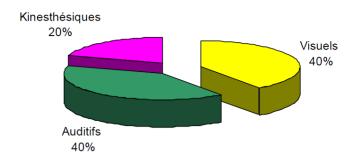

De plus, la mémorisation d'une information reçue à l'orale subit la « loi de l'évanouissement des souvenirs » ou loi de Haas, représentée sur la figure 27 (Béguin, 2012). Elle est ainsi retenue dans sa quasi-totalité pendant plusieurs jours mais sa trace mnémonique finit par s'estomper progressivement.

Figure 27. Représentation graphique de la loi de Haas d'après Béguin (2012)

Enfin, il faut prendre en compte la notion de sensibilité du récepteur : comme le montre la figure 28, seulement 40 % des individus ont une sensibilité auditive prédominante, ces personnes retiendront alors mieux un message reçu oralement, ils sont dits « récepteurs auditifs ».

Figure 28. Représentation graphique de la répartition en pourcentage des différents types de récepteurs, d'après Béguin (2012)

Un message oral seul semble donc insuffisant pour permettre la transmission d'un message clair, complet et durable comme devraient l'être les mesures thérapeutiques (médicales et hygiéniques) prescrites dans le cadre de maladies respiratoires chroniques. L'élaboration d'un support supplémentaire, écrit, permettant de combler les lacunes présentées par le message oral seul est le principal objectif de ce travail.

II. MATÉRIELS ET MÉTHODES

A. Sélection des sujets à traiter

1. Critères de sélection

Ce travail porte sur les maladies respiratoires chroniques qui se définissent comme des affections respiratoires dont les signes cliniques (toux, intolérance à l'effort, etc.) sont exprimés depuis plus de 2 mois (Silverstein et Drobatz, 2010; Corcoran *et al.*, 2011).

Parmi celles-ci ont été retenues les maladies les plus fréquemment rencontrées en consultation au CHUVA qui nécessitent un traitement et/ou des mesures hygiéniques au long cours, parfois durant toute la vie de l'animal.

Des maladies n'exprimant leurs signes cliniques que de façon sporadique, avec de longues phases subcliniques (par exemple, le syndrome « coryza » du chat) ou dont un traitement chirurgical présente un excellent pronostic sans médication au long cours ou nécessité d'application de mesures hygiéniques (par exemple, les polypes naso-pharyngés du chat), initialement considérées, ont de ce fait été exclues.

2. Maladies retenues

Les maladies retenues pour l'élaboration des fiches, estimées comme parmi les plus fréquentes en médecine respiratoire vétérinaire, sont celles présentées dans la première partie ; à savoir :

- Le syndrome obstructif des races brachycéphales (SORB);
- La bronchite chronique canine;
- Le collapsus trachéo-bronchique du chien ;
- Les maladies bronchiques félines (asthme félin et bronchite chronique);
- La fibrose pulmonaire du chien;
- La bronchopneumonie éosinophilique du chien.

B. Sources d'informations sur les maladies

Les informations médicales retenues dans l'élaboration des fiches ont été tirées des données recueillies dans la première partie. Celle-ci s'est appuyée sur des études cliniques les plus récentes possibles publiées dans les principales revues vétérinaires de médecine interne et chirurgie, des ouvrages de médecine respiratoire, de médecine interne et de chirurgie ainsi que des thèses d'exercice vétérinaire récentes.

C. Réalisation des documents

1. Le fond

Les fiches sont destinées à être remises au propriétaire à l'issue d'une consultation, le plus souvent après que le diagnostic soit établi.

Afin d'encourager l'implication de celui-ci dans les mesures thérapeutiques proposées, un effort de personnification a été réalisé : par exemple, plutôt que de parler de tous les chiens atteints de la maladie en règle générale comme dans la phrase « 50 % des chiens atteints présentent une récidive à l'arrêt du traitement », la formulation « votre chien présente 50 % de risque de rechute après l'arrêt du traitement » a été préférée.

De plus, s'adressant à un public souvent non averti, un travail de vulgarisation a été conduit. Cela suggère d'éviter l'utilisation de jargon médical ou d'acronymes (NFS, LBA, etc.) sans que ces termes n'aient été clairement expliqués.

Le niveau de détail consacré à chaque partie a été étudié afin que les points considérés comme les plus importants pour le propriétaire soient ceux qui ressortent le plus, ceci dans le but de le responsabiliser au maximum dans l'observance du traitement. Ainsi, la majeure partie des fiches est consacrée à la présentation de la maladie, sa prise en charge et les signes à surveiller à la maison pour évaluer son évolution (principalement une aggravation ou la survenue d'une complication). Ce dernier point justifie la mention du numéro de téléphone des urgences du CHUVA, afin que celui-ci soit rapidement accessible en cas de problème.

Le but de ces fiches étant purement informatif, elles ne prétendent pas remplacer les propos du clinicien ni encourager l'automédication. En ce sens, les critères diagnostiques des examens complémentaires et les posologies des médicaments n'y sont pas exposés.

En revanche, selon la demande exprimée par les propriétaires interrogés par Coe *et al.* (2008), les examens complémentaires sont présentés selon leur intérêt pour la santé de l'animal (notamment les éléments recherchés et les risques encourus). Il en va de même pour les médicaments (mécanisme d'action et effets indésirables) et les techniques chirurgicales (avantages et complications).

Enfin, une idée relative du coût est donnée lorsque plusieurs traitements différents sont possibles. En effet, la quasi-totalité des propriétaires se présentant en consultation désirent que ceux-ci leur soient communiqués de front (Coe *et al.*, 2007; Kogan *et al.*, 2008). Cela permet de favoriser la prise de décision partagée (Cornell et Kopcha, 2007).

2. La forme

La forme des fiches a été conçue pour que leur lecture soit la plus agréable possible.

Elles sont courtes (une feuille A4 recto-verso) afin de ne pas décourager le propriétaire avant même qu'il n'ait commencé à la lire. De ce fait, elles se veulent concises en favorisant les phrases courtes et les listes à puces plutôt que les longs paragraphes.

Souvent plus apprécié dans des études de médecine humaine proposant l'évaluation de fiches d'information médicale (Mansoor et Dowse, 2007; Dowse *et al.*, 2011), le format « paysage » a été choisi.

Pour permettre une lisibilité optimale, une police et une taille de caractère appropriées ont été utilisées (Arial 9 à 11 pour le texte, hors titres). De plus, les zones de texte sont aérées au maximum.

Pour l'aspect visuel, elles sont richement illustrées par des schémas explicatifs et des pictogrammes simples dont l'intérêt dans de tels supports a été avéré en médecine humaine (Mansoor et Dowse, 2003; Houts *et al.*, 2006; Mansoor et Dowse, 2007; Dowse *et al.*, 2011).

Les titres des parties sont présentés sous forme de question. Cette formulation permet de montrer que l'on va répondre à une question que le propriétaire peut être amené à se poser concernant la maladie de son animal.

Enfin, lorsque différentes options thérapeutiques sont disponibles, les informations ont été présentées sous forme de « grilles de choix », comme décrites dans une étude de médecine humaine (Elwyn *et al.*, 2013).

3. Logiciels utilisés

Les documents ont été réalisés en utilisant le logiciel Microsoft Word 2010. Les illustrations ont été conçues à l'aide du logiciel Paint.NET.

III.RÉSULTATS

A. Le modèle

Chaque fiche présente une trame similaire :

- Une présentation de la maladie et des signes cliniques avec un schéma et des termes simples ;
- L'explication des examens complémentaires les plus couramment réalisés au CHUVA pour la maladie en question ;
- Le traitement médical et/ou chirurgical ainsi que les mesures hygiéniques à prendre ;
- Le pronostic;
- Les signes à surveiller après le retour à la maison ;
- Le numéro de téléphone des urgences en cas de dégradation de l'état de santé de l'animal.

B. Le syndrome obstructif des races brachycéphales (SORB)

1. Présentation de la maladie

Cette partie présente les différentes malformations pouvant être retrouvées lors du SORB. Elle insiste sur le caractère évolutif de la maladie, notamment concernant les lésions secondaires. Les principaux signes cliniques sont évoqués : le stertor, la dyspnée mais aussi les troubles digestifs, souvent reliés au SORB.

Les risques de complications sont importants à expliciter car ce sont elles qui peuvent réellement mettre en jeu le pronostic vital de l'animal (SDRA, coup de chaleur, bronchopneumonie par fausse déglutition).

2. Examens complémentaires

Le diagnostic de SORB est facile à établir mais il faut pouvoir déterminer les malformations présentes au cas par cas :

- Analyses sanguines : bilan pré-anesthésique ;
- Radiographies thoraciques : recherche de l'hypoplasie trachéale et d'éventuelles maladies associées (bronchopneumonie, œdème pulmonaire, etc.) ;
- Endoscopie : visualisation du voile du palais, du larynx, de la trachée, des bronches et des cavités nasales.

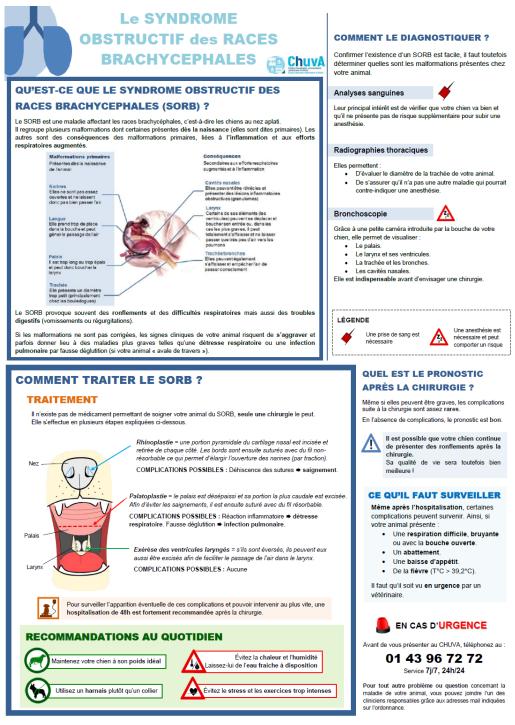
3. Traitement et recommandations

Il faut faire comprendre au propriétaire qu'il n'existe pas de traitement médical pour soigner le SORB. Le traitement chirurgical est donc présenté à l'aide de schémas simples pour les trois principales phases de l'opération (palatoplastie, rhinoplastie, exérèse des ventricules laryngés).

Les complications chirurgicales sont présentées avec les signes qu'elles engendrent et qu'il faudra donc surveiller.

La nécessité d'une hospitalisation pendant 48 heures après l'opération est également explicitée dans cette partie.

Les mesures hygiéniques recommandées sont précisées : gestion du poids, port d'un harnais, limiter l'exercice, éviter la chaleur et l'humidité, etc.


4. Pronostic

Le pronostic est bon si les mesures hygiéniques sont correctement respectées. Il faut toutefois rappeler les signes d'aggravation clinique de l'animal lors de la phase post-opératoire (SDRA, bronchopneumonie par fausse déglutition).

5. Conclusion

La fiche d'information concernant le SORB est présentée dans la figure 29. Elle est également disponible en taille réelle en annexe 1.

Figure 29. Miniature de la fiche d'informations médicales présentant le syndrome obstructif des races brachycéphales (recto et verso)

C. La bronchite chronique canine

1. Présentation de la maladie

La bronchite chronique est due à des agressions répétées des voies respiratoires, ce qui provoque des modifications de la muqueuse, une inflammation et une accumulation de mucus. Le principal signe clinique qui en découle est la toux quinteuse, souvent productive.

Il a été jugé intéressant de préciser, sans pour autant détailler, le fait que de nombreux chiens atteints de bronchite chronique présentent d'autres maladies cardiopulmonaires associées (collapsus trachéal, maladie valvulaires dégénératives, etc.) et qu'elles nécessitent souvent une prise en charge spécifique.

Les complications qui pourront sont évoquées sont la surinfection, l'HTAP et la bronchiectasie.

2. Examens complémentaires

Les principaux examens complémentaires utilisés à l'heure actuelle pour diagnostiquer la bronchite chronique sont :

- Les radiographies thoraciques : opacification broncho-interstitielle modérée à marquée et exclusion d'autres causes de toux ;
- La bronchoscopie : visualisation des lésions caractéristiques de la bronchite chronique (inflammation, hyperémie, mucus, etc.) ;
- L'analyse du LBA : recherche d'un infiltrat neutrophilique et exclusion d'une surinfection.

3. Traitement et recommandations

Les traitements présentés sont :

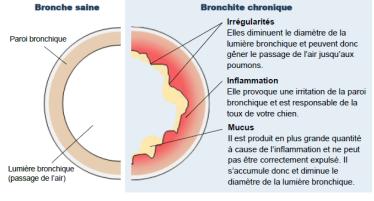
- Les glucocorticoïdes avec une comparaison entre la voie orale et la voie inhalée. Des vidéos expliquant l'utilisation du dispositif AeroDawg® sont disponibles sur internet (YouTube) ce qui est mentionné dans la fiche;
- Les bronchodilatateurs, notamment la théophylline ;
- Les antitussifs : il est expliqué que la toux permet l'élimination des débris et bactéries et donc ceux-ci sont déconseillés, sauf cas exceptionnel.

Les effets indésirables de ces médicaments sont également exposés.

Les mesures hygiéniques proposées sont surtout l'élimination des éléments tussigènes, le maintien d'un environnement propre, la prise en charge de l'obésité, l'utilisation d'un harnais et enfin la possibilité de réaliser des séances d'inhalations (solution saline ou eau bouillante).

4. Pronostic

Il est important de préciser que la réponse clinique est variable d'un animal à l'autre et que des ajustements de traitement, parfois sur une longue période, sont nécessaires avant de contrôler parfaitement les signes cliniques. Par ailleurs, beaucoup de chiens présentent une toux résiduelle et le risque de rechutes est non-négligeable. Ces deux points sont également mentionnés.


5. Conclusion

La fiche d'information concernant la bronchite chronique canine est présentée dans la figure 30. Elle est également disponible en taille réelle en annexe 2.

Figure 30. Miniature de la fiche d'informations médicales présentant la bronchite chronique (recto et verso)

plusieurs années. Elle est due à des modifications des parois des bronches (les bronches sont les conduits qui permettent l'acheminement de l'air aux poumons) causées par des agressions répétées tout au long de la vie

Elle provoque principalement une toux grasse (de par la quantité de mucus accumulée) et parfois des difficultés respiratoires ou une intolérance à l'effort.

En plus de cette maladie, votre chien peut présenter d'autres affections cardiagues ou respiratoires Demandez conseil à votre vétérinaire

Si elle n'est pas traitée, la bronchite chronique peut causer des lésions irréversibles, des surinfections bactériennes ou une hypertension pulmonaire (pouvant fatiguer le cœur).

COMMENT LA DIAGNOSTIQUER?

De nombreuses maladies peuvent causer de la toux. Il est donc important de les exclure chez votre chien.

Analyses sanguines

Leur principal intérêt est de vérifier que votre animal va bien et qu'il ne présente pas de risque supplémentaire pour subir une

Radiographies thoraciques

Elles permettent :

- D'évaluer l'aspect des bronches et des poumons qu est souvent modifié lors de bronchite chronique.
- De vérifier qu'il n'a pas une autre maladie cardiaque ou respiratoire qui pourrait aggraver ses signes cliniques.

Couplé au lavage broncho-alvéolaire (voir ci-dessous), c'est l'examen de choix pour diagnostiquer la bronchite chronique. Grâce à une petite caméra introduite par la bouche de votre chien, elle permet de visualiser ses bronches et d'évaluer la gravité de leur atteinte.

Lavage broncho-alvéolaire

Il est réalisé lors de la bronchoscopie.

Il permet de prélever des cellules des voies respiratoires en y injectant un liquide stérile aussitôt ré-aspiré. Certaines cellules sont caractéristiques de la bronchite chronique.

Il permet aussi de s'assurer qu'il n'y a pas de surinfection bactérienne.

Outre le risque anesthésique, cette procédure est sans danger pour la vie de votre animal.

LÉGENDE

Une prise de sang est Une anesthésie est

comporter un risque

Les analyses sont envoyées dans un laboratoire spécialisé. Les résultats ne seront pas

COMMENT TRAITER LA BRONCHITE CHRONIQUE?

TRAITEMENT

Anti-inflammatoires (corticoïdes)

Ils limitent l'inflammation bronchique donc la toux et l'accumulation de mucus

2 voies d'administration différentes existent

Voie d'administration	Principe actif	Risque d'effets indésirables	Coût mensuel
Orale	Prednisolone	Important	Le moins cher
Inhalée	Fluticasone	Faible	Le plus cher

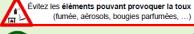
La voie d'administration inhalée nécessite l'utilisatior d'un dispositif particulier. Des vidéos expliquant son disponibles sur internet

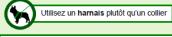
L'avantage de la voie inhalée est de minimiser les effets secondaires des corticoïdes. Elle devra être privilégiée si un traitement au long cours est nécessaire.

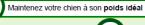
EFFETS INDÉSIRABLES NOTABLES: augmentation de la faim et de la soif, prise de poids, maladies thromboemboliques pulmonaires (rares)

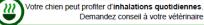
Bronchodilatateurs

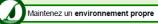
Ils augmentent l'effet des anti-inflammatoires et améliorent l'élimination du mucus. Le principe actif le plus couramment utilisé est la théophylline.


EFFETS INDÉSIRABLES NOTABLES : vomissements, diarrhée, troubles du rythme cardiaque, agitation, crises convulsives (rares).




Même si votre animal tousse, l'utilisation d'antitussifs est souvent contre-indiquée. Demandez conseil à votre vétérinaire.


CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÈSE VÉTÉRINAIRE PAR VINCENT LEYNAUD. IL NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION


RECOMMANDATIONS AU QUOTIDIEN

QUEL EST LE PRONOSTIC AVEC LE TRAITEMENT?

Avec un traitement adapté et la mise en application des recommandations au quotidien, le pronostic est bon.

Il se peut que votre chien ait besoin d'un

 Il est possible qu'il continue de tousser malgré le traitement Sa qualité de vie sera toutefois bien meilleure!

Des récidives sont possibles.

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi, si votre animal présente

- Une aggravation soudaine de la toux.
- Une respiration difficile.
- Un abattement.
- Une baisse d'appétit.
- De la fièvre (T°C > 39,2°C).
- L'un des effets indésirables cités cicontre

Il faut qu'il soit vu rapidement par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72 72

Service 7j/7, 24h/24

Pour tout autre problème ou question concernant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées

D. Le collapsus trachéo-bronchique du chien

1. Présentation de la maladie

Le mot collapsus nécessite d'être défini pour le grand public. Le mécanisme de la maladie est expliqué en précisant que plusieurs régions de la trachée ou des bronches peuvent être affectées et que ce collapsus provoque les signes cliniques (toux, dyspnée, hypoxie, etc.).

Comme pour la bronchite chronique, d'autres maladies cardiopulmonaires peuvent être présentes.

Les complications (surinfection, HTAP et bronchiectasie), bien que peu fréquentes, méritent d'être brièvement mentionnées car elles peuvent aggraver les signes cliniques de l'animal.

2. Examens complémentaires

Les examens complémentaires réalisés lors de collapsus trachéal sont :

- Les analyses sanguines comme bilan pré-anesthésique ;
- Les radiographies thoraciques et cervicales à différents moments du cycle respiratoire ;
- La fluoroscopie qui peut être nécessaire si les radiographies ne sont pas suffisantes ;
- La bronchoscopie qui permet de grader le collapsus trachéal et éventuellement le collapsus bronchique associé ;
- L'examen tomodensitométrique est aussi à envisager en particulier si la pose d'un stent est prévue.

3. Traitement et recommandations

Le traitement médical repose sur des antitussifs et des glucocorticoïdes. Les bronchodilatateurs sont également évoqués mais il est indiqué que ceux-ci n'ont d'intérêt que si les autres médicaments sont insuffisants.

Les mesures hygiéniques à adopter sont surtout le port d'un harnais, la prise en charge du surpoids ou de l'obésité, l'élimination des éléments tussigènes ainsi que la limitation du stress et de l'excitation.

Le traitement chirurgical est aussi présenté en précisant qu'il est surtout réservé aux cas réfractaires au traitement médical. Les principales complications sont exposées.

4. Pronostic

Le contrôle des signes cliniques est généralement permis par un traitement médical et des mesures hygiéniques correctement suivis. Cependant, certains animaux nécessitent une chirurgie. Le pronostic est également plutôt bon après celle-ci, même si les complications ne sont pas si rares.

5. Conclusion

Par souci de lisibilité, il a été choisi de réaliser une fiche principale sur le collapsus trachéobronchique avec présentation de la maladie, de son diagnostic et de son traitement médical (figure 31) et une autre n'exposant que le traitement chirurgical, qui ne concerne que quelques chiens atteints de CTB (figure 32). Les deux fiches en taille réelle figurent en annexe 3.

Figure 31. Miniature de la fiche d'informations médicales présentant le collapsus trachéobronchique (recto et verso)

COMMENT LE DIAGNOSTIQUER ?

De nombreuses maladies peuvent causer de la toux. Il est donc important de les exclure chez votre chien.

Analyses sanguines

Leur principal intérêt est de vérifier que votre animal va bien et qu'il ne présente pas de risque supplémentaire pour subir une anesthésie.

Radiographies cervicales et thoraciques

Elles permettent :

- Dans certains cas seulement, de localiser le collapsus de votre animal
- De vérifier qu'il n'a pas une autre maladie cardiaque ou respiratoire qui pourrait aggraver ses signes cliniques.

Fluoroscopie

Elle permet une visualisation des mouvements de la trachée contrairement aux radiographies qui ne donnent qu'une image figée. Elle est donc plus précise que celles-ci pour identifier le collapsus.

Bronchoscopie

Grâce à une petite caméra introduite par la bouche de votre chien, il est possible de visualiser sa trachée et ses bronches de l'intérieur et donc de déterminer leur degré d'affaissement. Elle est beaucoup plus précise que les radiographies et la fluoroscopie mais elle nécessite une anesthésie générale.

Examen tomodensitométrique (scanner)

Il est également très précis mais nécessite au minimum une sédation (toutefois moins risquée que l'anesthésie générale). Il est surtout utile lorsqu'une chirurgie est envisagée, parlez-en à votre vétérinaire.

LÉGENDE

Une prise de sang est

Une anesthésie est nécessaire et peut comporter un risque

COMMENT TRAITER LE COLLAPSUS TRACHÉO-BRONCHIQUE ?

Le traitement repose avant tout sur l'application de mesures hygiéniques (recommandations ci-dessous). Si cela s'avère nécessaire, un traitement médical peut être ajouté.

RECOMMANDATIONS AU QUOTIDIEN

TRAITEMENT MÉDICAL

Antitussifs

Ils permettent d'interrompre la toux et donc de limiter l'aggravation des lésions de votre chien. Exemples de principes actifs : codéine, butorphanol, dextrometorphan, pentoxyvérine, codéthyline.

EFFETS INDÉSIRABLES NOTABLES: sédation, constipation, perte d'efficacité.

Anti-inflammatoires

Ils diminuent la toux en limitant l'inflammation trachéale et bronchique Exemple de principes actif : prednisolone.

EFFETS INDÉSIRABLES NOTABLES: augmentation de la faim et de la soif, prise de poids, maladies thromboemboliques pulmonaires (rares).

• Bronchodilatateurs

Ils sont prescrits si les traitements ci-dessus ne sont pas suffisants Exemple de principes actif : théophylline.

EFFETS INDÉSIRABLES NOTABLES: vomissements, diarrhée, troubles du rythme cardiaque, agitation, crises convulsives (rares).

CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÈSE VÉTÉRINAIRE PAR VINCENT LEYNAUD. IL NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION.

QUEL EST LE PRONOSTIC AVEC LE TRAITEMENT ?

Avec un bon suivi des recommandations quotidiennes et (si nécessaire) un traitement médical adapté, le pronostic est **bon**.

- Il est possible que votre chien continue de tousser malgré le traitement.
 Sa qualité de vie sera toutefois bien meilleure!
- Si, malgré tout, votre chien ne répond pas au traitement, il se peut qu'il ait besoin d'une chirurgie (parlez-en à votre vétérinaire).

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une **récidive**, d'une **complication** ou **d'effets indésirables** dus au traitement. Ainsi, si votre animal présente :

- Une aggravation soudaine de la toux.
- Une respiration difficile.
- Un abattement.
- Une baisse d'appétit.
- De la fièvre (T°C > 39,2°C).
- L'un des effets indésirables cités cicontre.

Il faut qu'il soit vu rapidement par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72 72

Service 7j/7, 24h/24

Pour tout autre problème ou question concernant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance.

Figure 32. Miniature de la fiche d'informations médicales présentant le traitement chirurgical du collapsus trachéo-bronchique

E. Les maladies bronchiques félines

1. Présentation de la maladie

Les maladies bronchiques félines s'apparentent à l'asthme bien connu chez l'être humain. Il peut être intéressant de les présenter ainsi car cette maladie est assez fréquente en médecine humaine et on peut supposer que bon nombre de propriétaires connaissent au moins une personne asthmatique dans leur entourage.

Le mécanisme de bronchoréactivité est expliqué en indiquant qu'il cause les signes cliniques par crises suite à la présentation d'un aéro-allergène (toux ou détresse respiratoire).

2. Examens complémentaires

Les examens complémentaires permettant d'obtenir des informations intéressantes sont :

- Les analyses sanguines qui peuvent révéler une éosinophilie dans certains cas. Elles peuvent également permettre d'établir un bilan pré-anesthésique ;
- Les radiographies thoraciques avec une opacification bronchique et parfois des signes plus spécifiques (rétention aérique, aplatissement du diaphragme, etc.) ;
- La bronchoscopie et surtout le LBA permettant de mettre en évidence l'infiltrat inflammatoire (neutrophilique, éosinophilique ou mixte) des voies respiratoires. Il faut toutefois indiquer les risques que ces procédures représentent (anesthésie et « bronchostimulation »);
- L'exclusion des causes parasitaires (coprologie, sérologies) : il faut faire comprendre qu'elle est primordiale car certaines maladies parasitaires peuvent mimer les signes cliniques et paracliniques des maladies bronchiques félines.

3. Traitement et recommandations

Le traitement est basé sur l'utilisation de glucocorticoïdes. Les différentes voies d'administration sont présentées avec leurs avantages et leurs inconvénients (voies orale, inhalée et intramusculaire). Comme pour la bronchite chronique canine, des vidéos expliquant l'utilisation du dispositif AeroKat® existent sur internet et sont indiquées aux propriétaires.

Les bronchodilatateurs sont également souvent associés.

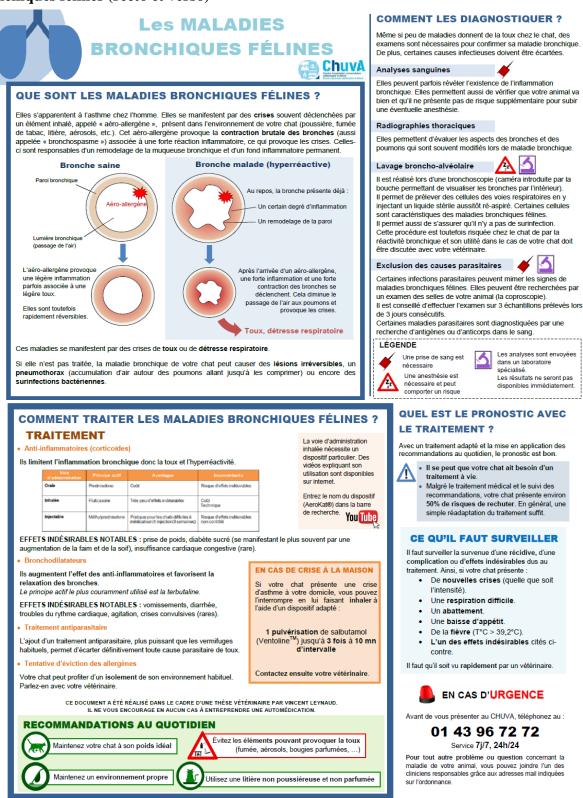
Un traitement antiparasitaire peut être intéressant à mettre en place pour exclure définitivement une cause parasitaire.

Enfin, pour les cas réfractaires aux glucocorticoïdes, la ciclosporine peut être utilisée.

Par ailleurs, une tentative d'isolement du chat peut être encouragée afin d'identifier un potentiel allergène.

Un encadré indiquant la procédure à suivre lors de crise à la maison est figuré, de telle sorte que les instructions soient claires et facilement lisibles lors de cette situation d'urgence.

Les mesures hygiéniques proposées sont principalement la limitation d'exposition aux aéroallergènes connus (fumée, aérosols, poussière, certaines plantes), l'utilisation d'une litière non poussiéreuse et la perte de poids si celle-ci s'avère nécessaire.


4. Pronostic

Il est bon surtout si les mesures hygiéniques sont respectées. Le traitement peut même être interrompu définitivement dans certains cas. Les rechutes ne sont toutefois pas rares (50 % des cas environ).

5. Conclusion

La fiche d'information concernant les maladies bronchiques félines est présentée dans la figure 33. Elle est également disponible en taille réelle en annexe 4.

Figure 33. Miniature de la fiche d'informations médicales présentant les maladies bronchiques félines (recto et verso)

F. La fibrose pulmonaire du chien

1. Présentation de la maladie

La maladie s'explique par des modifications de la structure des poumons qui diminuent les échanges gazeux. Il est précisé que la cause de ce mécanisme pathologique est encore inconnue.

2. Examens complémentaires

Les examens complémentaires intéressants à évoquer sont :

- Les radiographies thoraciques : visualisation d'une opacification interstitielle généralisée, souvent marquée ;
- Le test de marche pendant 6 minutes bien qu'encore peu pratiqué ;
- L'échocardiographie en cas de suspicion d'HTAP. Cette dernière étant très évocatrice de fibrose pulmonaire chez les WHWT;
- L'examen tomodensitométrique, beaucoup plus précis que les radiographies et donc plus intéressant pour évaluer l'évolution de la maladie lors des suivis ;
- La bronchoscopie et le LBA dont le principal intérêt est d'exclure d'autres causes de toux ou d'intolérance à l'effort ;
- Les biopsies pulmonaires qui sont rarement réalisées mais qui représentent le seul moyen d'obtenir un diagnostic de certitude.

3. Traitement et recommandations

Il est mentionné que malheureusement, aucun traitement spécifique n'existe à l'heure actuelle. Les médicaments utilisés ne permettent que de limiter l'expression clinique :

- Les glucocorticoïdes de par leur action antiinflammatoire, l'inflammation ayant un rôle prépondérant dans le mécanisme d'auto-entretien de la toux ;
- Les bronchodilatateurs bien que présentant une efficacité incertaine ;
- Les antitussifs peuvent être indiqués en cas de toux sèche et importante ;
- La N-acétylcystéine, antioxydant permettant une amélioration de la fonction pulmonaire ;
- Enfin, le sildénafil est présenté pour son intérêt dans le traitement de l'HTAP.

La gestion de l'obésité est également un point important de la prise en charge.

4. Pronostic

Le traitement symptomatique permet de procurer une qualité de vie convenable pour l'animal. Cependant, la progression de la maladie est inévitable ce qui rend son pronostic assez sombre (médiane de survie d'environ 1 an après le diagnostic).

5. Conclusion

La fiche d'information concernant la fibrose pulmonaire du chien est présentée dans la figure 34. Elle est également disponible en taille réelle en annexe 5.

Figure 34. Miniature de la fiche d'informations médicales présentant la fibrose pulmonaire du chien (recto et verso)

La FIBROSE PULMONAIRE du CHIEN

QU'EST-CE QUE LA FIBROSE PULMONAIRE?

Lors de la respiration, l'oxygène (O2) arrive dans l'organisme par une diffusion entre les alvéoles pulmonaires (structures terminant les petites bronches) et les vaisseaux sanguins. En cas de fibrose pulmonaire, la paroi pulmonaire qui sépare ces deux éléments s'épaissit progressivement ce qui limite l'apport d'oxygène. La cause de ce processus est encore inconnue

Fibrose pulmonaire Situation normale L'apport d'oxygène est limité par l'épaississement de la paroi. Il en découle une hypoxie chronique (manque Alvéole d'oxygène sur le long cours) qui peut être néfaste pour O_2 votre chien. O_2 Paroi pulmonaire saine Épaississement de la paroi sanguin

La fibrose pulmonaire peut provoquer une fatigue importante avec intolérance à l'effort, des difficultés respiratoires et aussi de la toux

En plus de cette maladie, votre chien peut présenter d'autres affections cardiaques ou respiratoires. Demandez conseil à votre vétérinaire.

Si elle n'est pas traitée, elle engendre une hypertension pulmonaire (pouvant fatiquer le cœur) et peut favoriser les surinfections bactériennes.

COMMENT LA DIAGNOSTIQUER?

Les examens complémentaires ci-dessous ont un intérêt dans le diagnostic et le suivi de la maladie

Radiographies thoraciques

Elles permettent :

- D'évaluer l'aspect des poumons de votre chien et juger ainsi de la gravité de la maladie
- Dans certains cas, de révéler des signes secondaires d'hypertension

Test de marche pendant 6 minutes

Il permet d'évaluer la capacité de votre chien à fournir un effort. Selon la gravité de sa maladie, il sera capable de marcher sur une distance plus ou moins importante pendant 6 minutes. La distance mesurée peut permettre un suivi de la maladie (et donc de sa tolérance à l'effort) après mise en place du

Échocardiographie

Elle permet d'évaluer le fonctionnement cardiaque de votre chien. Elle est surtout indiquée lors de suspicion d'hypertension pulmonaire ; cependant, à cause de la fréquence de cette complication, un contrôle échocardiographique régulier est recommandé.

Examen tomodensitométrique (scanner)

Il permet d'évaluer l'atteinte des poumons de votre chien de façon beaucoup plus précise que les radiographies. C'est donc un meilleur moven de suivi de

Une sédation (moins risquée qu'une anesthésie générale) est nécessaire

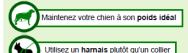
Bronchoscopie et lavage broncho-alvéolaire 🛮 🛕 么

À l'aide d'une petite caméra introduite par la bouche de votre chien, il est possible de visualiser l'aspect des voies respiratoires de l'intérieur et d'en prélever des cellules pouvant être anormales lors de certaines maladies respiratoires. Une anesthésie générale est toutefois nécessaire Leur principal intérêt est d'exclure d'autres maladies pouvant expliquer les signes cliniques de votre chien.

Biopsies pulmonaires

C'est le seul moyen de diagnostiquer avec certitude une fibrose pulmonaire mais c'est également le plus invasif. Parlez-en à votre vétérinaire.

LÉGENDE


Une anesthésie est nécessaire et peut comporter un risque

Les analyses sont envoyées dans un laboratoire spécialisé. Les résultats ne seront pas disponibles immédiatement

COMMENT TRAITER LA FIBROSE PULMONAIRE ?

La cause n'étant pas connue, il n'existe aucun traitement permettant de guérir votre chien de la fibrose pulmonaire. Il est cependant possible de ralentir sa progression et limiter son expression clinique grâce à des mesures hygiéniques (recommandations ci-dessous) et, si nécessaire, un traitement médical symptomatique

RECOMMANDATIONS AU QUOTIDIEN

TRAITEMENT MÉDICAL

Anti-inflammatoires

Ils diminuent la toux en limitant l'inflammation pulmonaire. Exemple de principes actif : prednisolone.

Vous pourrez trouver des informations supplémentaires sur la fibrose pulmonaire et son traitement sur le site internet : http://www.cvu.ulg.ac.be/cms/c 457501fr/fibrose-pulmonaire idionathium fai choz le chion. pulmonaire-idiopathique-fpi-chez-le-chien

EFFETS INDÉSIRABLES NOTABLES: augmentation de la faim et de la soif, prise de poids, maladies thromboemboliques pulmonaires (rares).

Ils peuvent être utilisés si la toux est sèche et si les antiinflammatoires ne sont pas suffisants pour la contrôler. Exemples de principes actifs : pentoxyvérine, codéthyline.

EFFETS INDÉSIRABLES NOTABLES: sédation, constipation, perte d'efficacité.

Il s'agit d'un antioxydant pouvant permettre d'améliorer la fonction respiratoire de votre chien.

EFFETS INDÉSIRABLES NORABLES : Aucun

Inhibiteur de la phosphodiestérase de type 5

C'est le traitement de choix lors d'hypertension pulmonaire.

EFFETS INDÉSIRABLES NOTABLES : vomissements, diarrhée, rougeurs cutanées.

CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÈSE VÉTÉRINAIRE PAR VINCENT LEYNAUD. IL NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION

QUEL EST LE PRONOSTIC AVEC LE TRAITEMENT?

Étant donné l'absence de traitement spécifique, il est impossible d'empêcher la progression de la fibrose pulmonaire de votre animal

Avec un traitement et des mesures hygiéniques adaptés, votre chien peut vivre encore plusieurs mois à plusieurs années avec sa maladie

On estime que la moitié des chiens atteints de fibrose pulmonaire vivent plus d'un an avec le traitement

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi, si votre animal présente

- Une aggravation soudaine de la toux.
- Une respiration difficile
- Un abattement.
- Une baisse d'appétit.
- De la fièvre (T°C > 39,2°C).
- L'un des effets indésirables cités cicontre

Il faut qu'il soit vu rapidement par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72 72

Service 7i/7 24h/24

Pour tout autre problème ou question concernant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance

G. La bronchopneumonie éosinophilique

1. Présentation de la maladie

La cause de cette maladie n'est pas connue non plus. Elle se caractérise par un infiltrat inflammatoire éosinophilique des voies aériennes. Une composante allergique est probable.

2. Examens complémentaires

Les examens complémentaires réalisés classiquement lors de bronchopneumonie éosinophilique sont :

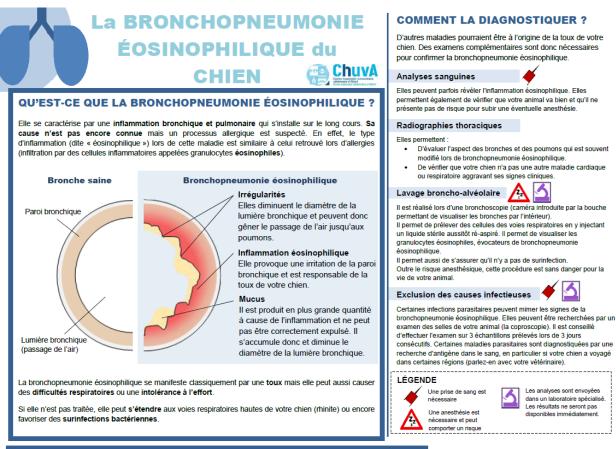
- L'analyse sanguine qui permet parfois de mettre en évidence une éosinophilie ;
- Les radiographies thoraciques, anormales dans presque tous les cas ;
- La bronchoscopie et surtout l'analyse du lavage broncho-alvéolaire permettant de mettre en évidence l'infiltrat éosinophilique ;
- Pour les mêmes raisons que pour l'asthme félin, l'exclusion des causes infectieuses et notamment parasitaires (coprologie, sérologie) est primordiale. Surtout dans la mesure où le traitement utilisé est immunosuppresseur.

3. Traitement et recommandations

En l'absence de maladie intercurrente, on utilise des glucocorticoïdes à dose immunosuppressive. Les effets secondaires exposés sont donc un peu différents de ceux lors d'une utilisation à dose antiinflammatoire : s'ajoutent aux effets secondaires classiques les risques de développement de maladies infectieuses ou tumorales (liées à l'immunosuppression).

Un traitement antiparasitaire peut également être recommandé.

4. Pronostic


Le pronostic est généralement bon : les animaux traités sous glucocorticoïdes présentent une amélioration des signes cliniques significative dans 8 à 9 cas sur 10.

Il est toutefois mentionné que les rechutes après l'arrêt du traitement ne sont pas rares et qu'elles devront être surveillées par le propriétaire.

5. Conclusion

La fiche d'information concernant la bronchopneumonie éosinophilique est présentée dans la figure 35. Elle est également disponible en taille réelle en annexe 6.

Figure 35. Miniature de la fiche d'informations médicales présentant la bronchopneumonie éosinophilique (recto et verso)

QUEL EST LE PRONOSTIC AVEC LE TRAITEMENT ?

Avec un traitement adapté et la mise en application des recommandations au quotidien, le pronostic est bon.

Il se peut que votre

 Il se peut que votre chien ait besoin d'un traitement à vie.

Il est possible qu'il continue de tousser malgré

le traitement. Sa qualité de vie sera toutefois bien meilleure!

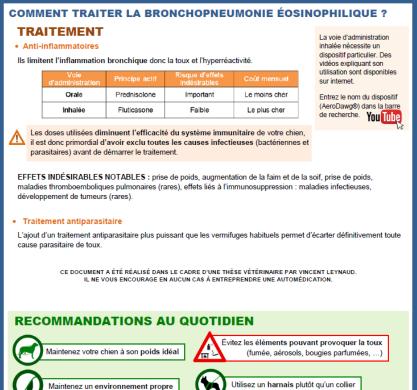
 Malgré toutes les mesures mises en œuvre, votre chien présente environ 50% de risques de rechuter. En général, une simple réadaptation du traitement suffit.

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi si votre chien présente:

- Une aggravation de sa toux.
- Une respiration difficile.
- Un abattement.
- Une baisse d'appétit.
- De la fièvre (T°C > 39,2°C).
- L'un des effets indésirables cités cicontre.

Il faut qu'il soit vu rapidement par un vétérinaire.


EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72 72

Service 7j/7, 24h/24

Pour tout autre problème ou question concernant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance.

IV. DISCUSSION

Les documents réalisés sont destinés à apporter un mode de communication supplémentaire lors des consultations de médecine respiratoire. L'apport de ce message écrit permet au clinicien de combler certaines lacunes du message verbal déjà mentionnées :

- La transmission du message : le vétérinaire qui construit son support écrit peut y inclure toutes les informations qu'il juge nécessaires en ayant le temps d'y réfléchir. Il risque alors moins d'oublier des points importants et peut prendre le temps de choisir des termes plus faciles à comprendre pour son interlocuteur. Ceci permet de réduire la perte d'information présentée dans la figure 26 ;
- La durabilité du message : en emportant le document écrit avec lui, le propriétaire tient à sa disposition un résumé des principales informations échangées lors de la consultation. Il peut ainsi facilement se les remémorer dès que nécessaire ;
- La sensibilité du récepteur : comme présenté dans la figure 28, seulement 40 % des personnes sont sensibles à un message verbal. Ajouter un message écrit et correctement ordonné avec des informations mises en valeur permet d'atteindre également les récepteurs « visuels » et « kinesthésiques » (Béguin, 2012).

De plus, il permet un gain de temps précieux ; point important pour bon nombre de vétérinaires qui écourtent parfois leurs consultations afin de rentabiliser leur temps de travail, au détriment de la communication (Cornell et Kopcha, 2007). Le vétérinaire peut ainsi expliquer oralement au propriétaire les grandes lignes de la maladie et de son traitement puis laisser à ce dernier un complément écrit contenant des informations plus détaillées.

L'utilisation de tels documents se développe de plus en plus en médecine vétérinaire. Celles-ci ont déjà fait leurs preuves en médecine humaine : Johnson et Standford (2005) ont montré que dans deux services de pédiatrie différents, les parents ayant reçu des informations écrites en complément d'informations orales ressentaient une meilleure satisfaction de leur consultation et avaient de meilleures connaissances concernant la maladie de leur enfant que ceux n'ayant reçu que des informations orales.

Lors de l'élaboration des fiches, un important travail de présentation a été fourni afin de les rendre agréables à lire. Elles sont courtes et abondamment illustrées. Une étude en médecine humaine de Mansoor et Dowse (2007) auprès de malades du virus de l'immunodéficience humaine en Afrique du Sud a montré que les patients ayant reçu des fiches courtes et illustrées assimilaient mieux les informations médicales présentées par rapport à ceux ayant reçu des fiches assez longues ne contenant que du texte ou ceux n'ayant pas reçu de fiche du tout (message oral uniquement). Cette dernière étude souligne aussi l'intérêt de l'utilisation d'illustrations claires et de pictogrammes dans les documents d'informations médicales, comme cela a été le cas dans les documents proposés par cette thèse. Ce point a fait l'objet d'un travail de synthèse en médecine humaine par Houts *et al.* (2006) qui montre que l'utilisation de dessins dans la communication médicale écrite est utile pour :

- Attirer l'attention et encourager sa lecture ;
- Améliorer la compréhension, principalement chez les personnes les moins familières au milieu médical ;
- Améliorer la capacité de mémorisation des informations ;
- Améliorer l'adhérence aux instructions.

Ce dernier élément est primordial dans la gestion des maladies chroniques en médecine vétérinaire. Une autre méthode pour renforcer cette adhérence au plan thérapeutique a été employée dans les fiches proposées par cette thèse : l'utilisation de grilles de choix qui présentent notamment les avantages et les inconvénients de chaque alternative thérapeutique proposée. Ceci a prouvé son intérêt en médecine humaine (Elwyn *et al.*, 2013).

L'un des principaux problèmes rencontrés lors de la création de documents d'informations médicales est qu'ils ne doivent pas prétendre à remplacer le message oral du clinicien ni à estomper l'intérêt du propriétaire à présenter son animal en consultation. En ce sens, la mention « ce document n'encourage pas l'automédication » apparait sur les fiches réalisées dans cette thèse, comme l'a suggéré Béguin (2012) dans son travail d'élaboration de fiches informatives portant sur les maladies gastro-intestinales chroniques des carnivores domestiques. Pour les mêmes raisons, aucun critère de diagnostic concernant les examens complémentaires n'y figure.

Ce travail présente aussi certaines limites. Malgré les efforts de personnification entrepris, la fiche proposée pour une maladie donnée présente une sorte d'uniformité proposée à des cas très divers. C'est pourquoi il a été choisi de traiter les points « classiques » de chaque maladie sans pouvoir détailler au cas par cas, sachant pertinemment que les fiches ne pourront pas répondre à toutes les questions des propriétaires. Une façon de palier à ce manque serait peut-être de faire évoluer ces documents en une sorte de « carnet de santé » spécifique de la maladie où les informations permettant de la comprendre seront indiquées et où certaines autres rubriques concernant le traitement et le suivi seront laissées libres à la rédaction du vétérinaire ou du propriétaire (pour les traitements ou le suivi par exemple). Cela favoriserait certainement d'avantage l'implication de ce dernier en adaptant entièrement le document au cas de son animal. Même si cette idée de « carnet de suivi de la maladie » n'est probablement applicable qu'aux maladies chroniques, cette idée mérite d'être creusée.

Un autre défaut des fiches proposées est qu'elles ont été principalement construites à partir des données de la littérature concernant la communication en médecine humaine et d'opinions personnelles à propos des attentes des propriétaires d'animaux atteints de maladies chroniques. Une approche sans doute plus constructive aurait été de proposer différentes formes, illustrations et explications directement à des propriétaires, par le biais de « focus group » par exemple, afin de recueillir leurs impressions, sélectionner leurs préférences et s'en servir comme base de création des fiches. Cette démarche a été initialement envisagée pour la conception de cette thèse mais n'a pas pu être menée à bien principale de par son aspect chronophage (réalisation des différents exemplaires de fiches, recrutement de propriétaires volontaires, organisation de réunions, interprétation des résultats, etc.), incompatible avec le temps disponible pour l'élaboration de ce travail.

Par ailleurs, ce travail, loin d'être exhaustif, ne s'intéresse qu'à peu de maladies respiratoires chroniques, bien qu'elles soient parmi les plus fréquentes. Il a en effet été choisi de se focaliser sur les maladies nécessitant un degré de coopération maximal du propriétaire, avec notamment des mesures hygiéniques à appliquer à la maison. Le modèle proposé par cette thèse peut toutefois être retravaillé pour s'adapter à d'autres affections respiratoires ou encore à des maladies concernant d'autres disciplines de la pratique vétérinaire.

Enfin, bien que les fiches ne se limitent qu'aux procédures actuellement employées au CHUVA, leur format permet de les faire évoluer facilement en fonction des avancées diagnostiques et thérapeutiques telles que présentées dans la première partie (par exemple : la pléthysmographie barométrique du corps entier, les biomarqueurs, l'immunothérapie, etc.).

Malgré ces limites, cette thèse propose un modèle de fiches qui se veut aussi attractif qu'éducatif tout en véhiculant des consignes simples. L'élaboration d'un tel modèle est primordiale alors que l'information écrite vétérinaire est en plein essor, principalement dans une structure universitaire telle que le CHUVA où les propriétaires attendent certainement plus d'informations que dans des structures « classiques ». Ce travail pourrait ainsi servir de base pour améliorer la communication entre le personnel médical et les propriétaires au sein de cet établissement. En effet, en plus de leur intérêt direct exposé dans cette thèse, les fiches peuvent être reprises comme point de départ pour la création de nouveaux moyens d'informer les propriétaires sur la maladie de leur animal et solliciter encore d'avantage leur participation. Par exemple, en créant des livrets personnalisés consacrés

uniquement à la maladie de l'animal (sur le principe des carnets de santé proposés auparavant) ou encore un support informatique interactif adapté aux nouveaux modes de communication actuels (applications smartphone, tablettes, etc.).

CONCLUSION

Il ressort de ce travail que les maladies respiratoires chroniques peuvent parfois être difficiles à diagnostiquer avec les moyens disponibles actuellement. De plus, comme pour toute maladie chronique, le traitement s'effectue sur le long terme et s'associe souvent à des modifications de l'environnement de l'animal afin de lui permettre une qualité de vie acceptable. Malgré tout cela, des rechutes sont parfois possibles même après de longues phases de rémission clinique.

Tous ces éléments peuvent être très frustrants pour le propriétaire mais également pour le vétérinaire. La clé d'une bonne gestion de ces cas difficiles passe donc par une bonne communication permettant une collaboration entre ces deux parties.

L'apport d'un message écrit, associé au message verbal lors de la consultation, permet de renforcer cette démarche collaborative entre le vétérinaire et le propriétaire et donc l'adhérence de ce dernier au plan thérapeutique établi.

La création des fiches d'informations médicales présentée dans cette thèse s'inscrit dans la continuité du travail de Béguin (2012) qui avait élaboré de tels documents pour une autre discipline de la médecine interne vétérinaire : la gastro-entérologie. Cela permet d'étoffer « l'arsenal » disponible en termes d'information et d'éducation des propriétaires dans le cadre de maladies chroniques vétérinaires.

Ce travail n'est en aucun cas exhaustif: il propose un modèle de fiches qui pourra être retravaillé pour s'adapter à d'autres disciplines de la pratique vétérinaire. Les documents proposés se basent sur les connaissances actuelles ainsi que les démarches (diagnostiques et thérapeutiques) employées au CHUVA pour ces maladies. Avec le développement de nouvelles méthodes pour leur diagnostic et leur traitement (comme il a été vu dans la première partie), les fiches d'informations proposées dans cette thèse sont aussi amenées à évoluer.

Leur forme et leur contenu ont été étudiés selon les attentes actuelles du « grand public » en termes de communication médicale. Ne se basant que sur des données de la littérature de médecine humaine et sur des opinions personnelles, ces documents sont certainement perfectibles et mériteraient d'être testés « sur le terrain » afin de vérifier s'ils répondent bel et bien à ces attentes.

BIBLIOGRAPHIE

ABOOD SK (2007). Increasing adherence in practice: making your clients partners in care. *Vet Clin Small Anim*, **37**(1), 151-164

ADAMAMA-MORAITOU KK, PATSIKAS MN, KOUTINAS AF (2004). Feline lower airway disease: a retrospective study of 22 naturally occurring cases from Greece. *J Feline Med Surg*, **6**(4), 227-233

ADAMAMA-MORAITOU KK, PARDALI D, ATHANASIOU LV, PRASSINOS NN, KRITSEPI M, RALLIS TS (2011). Conservative management of canine tracheal collapse with stanozolol: a double blinded, placebo control clinical trial. *Int J Immunopathol Pharmacol*, **24**(1), 111-118

ADAMS CL, FRANKEL RM (2007). It may be a dog's life but the relationship with her owners is also key to her health and well being: communication in veterinary medicine. *Vet Clin Small Anim*, **37**(1), 1-17

ANDERSON-WESSBERG K (2010). Coughing. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 250-253

ANDREASEN CB (2003). Bronchoalveolar lavage. Vet Clin Small Anim, 33(1), 69-88

ATKINS C (2010). Heartworm disease. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 1353-1380

BACH JF, ROZANSKI EA, McGREGOR J, BETKOWSKI JM, RUSH JE (2006). Retrospective evaluation of sildenafil citrate as a therapy for pulmonary hypertension in dogs. *J Vet Intern Med*, **20**(5), 1132-1135

BACH JF (2008). Hypoxemia: a quick reference. Vet Clin Small Anim, 38(3), 423-426

BALAKRISHNAN A, KING LG (2014). Updates on pulmonary function testing in small animals. *Vet Clin Small Anim*, **44**(1), 1-18

BAUER NB, SCHNEIDER MA, NEIGER R, MORITZ A (2006). Liver disease in dogs with tracheal collapse. *J Vet Intern Med*, **20**(4), 845-849

BECKER WM, BEAL M, STANLEY BJ, HAUPTMAN JG (2012). Survival after surgery for tracheal collapse and the effect of intrathoracic collapse on survival. *Vet Surg*, **41**(4), 501-506

BÉGUIN J (2012). Réalisation de documents d'information médicale à l'usage des propriétaires de chiens et de chats présentant des affections gastro-intestinales chroniques. Thèse Méd. Vet., Alfort, n° 93

BERNAERTS F, TALAVERA J, LEEMANS J, HAMAIDE A, CLAEYS S, KIRSCHVINK N *et al.* (2010). Description of original endoscopic findings and respiratory functional assessment using barometric whole-body plethysmography in dogs suffering from brachycephalic airway obstruction syndrome. *Vet J*, **183**(1), 95-102

BEXFIELD NH, FOALE RD, DAVISON LJ, WATSON PJ, SKELLY BJ, HERRITAGE ME (2006). Management of 13 cases of canine respiratory disease using inhaled corticosteroids. *J Small Anim Pract*, **47**(7), 377-382

BOLOGNIN M, KIRSCHVINK N, LEEMANS J, DE BUSCHER V, SNAPS F, GUSTIN P *et al.* (2009). Characterisation of the acute and reversible airway inflammation induced by cadmium chloride inhalation in healthy dogs and evaluation of the effects of salbutamol and prednisolone. *Vet J*, **179**(3), 443-450

BOTTERO E, BELLINO C, DE LORENZI D, RUGGIERO P, TARDUCCI A, D'ANGELO A *et al.* (2013). Clinical evaluation and endoscopic classification of bronchomalacia in dogs. *J Vet Intern Med*, **27**(4), 840-846

BROWN AJ, DAVISON E, SLEEPER MM (2010). Clinical efficacy of sildenafil in treatment of pulmonary arterial hypertension in dogs. *J Vet Inter Med*, **24**(4), 850-854

BUBACK JL, BOOTHE HW, HOBSON HP (1996). Surgical treatment of tracheal collapse in dogs: 90 cases (1983-1993). *J Am Vet Med Assoc*, **208**(3), 380-384

BYERS CG, DHUPA N (2005a). Feline bronchial asthma: pathophysiology and diagnosis. *Compend Cont Educ Pract Vet*, **27**(6), 418-425

BYERS CG, DHUPA N (2005b). Feline bronchial asthma: treatment. *Compend Cont Educ Pract Vet*, **27**(6), 426-432

CALVERT CA, MAHAFFEY MB, LAPPIN MR (1988). Pulmonary and disseminated eosinophilic granulomatosis in dogs. *J Am Anim Hosp Assoc*, **24**(5), 311-320

CAMPBELL FE (2007). Cardiac effects of pulmonary disease. Vet Clin Small Anim, 37(5), 949-962

CHISNELL HK, PARDO AD (2014). Long-term outcome, complications and disease progression in 23 dogs after placement of tracheal ring prostheses for treatment of extrathoracic tracheal collapse. *Vet Surg*, à paraître, doi: 10.1111/j.1532-950X.2014.12206.x

CLERCX C, PEETERS D, SNAPS F, HANSEN P, McENTEE K, DETILLEUX J et al. (2000). Eosinophilic bronchopneumopathy in dogs. J Vet Intern Med, 14(3), 282-291

CLERCX C, PEETERS D, GERMAN AJ, KHELIL Y, McENTEE K, VANDERPLASSCHEN A (2002). An immunologic inverstigation of canine eosinophilic bronchopneumopathy. *J Vet Intern Med*, **16**(3), 229-237

CLERCX C, PEETERS D (2007). Canine eosinophilic bronchopneumopathy. *Vet Clin Small Anim*, **37**(5), 917-935

COHN LA, DECLUE AE, REINERO CR (2008). Endocrine and immunologic effects of inhaled fluticasone proprionate in healthy dogs. *J Vet Intern Med*, **22**(1), 37-43

COHN LA (2010a). Glucocorticoid therapy. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 602-608

COHN LA (2010b). Pulmonary Parenchymal Disease. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 1096-1119

COROCORAN BM, THODAY KL, HENFREY JI, SIMPSON JW, BURNIE AG, MOONEY CT (1991). Pulmonary infiltration with eosinophils in 14 dogs. *J Small Anim Pract*, **32**(10), 494-502

CORCORAN BM, FOSTER DJ, LUIS FUENTESV (1995). Feline asthma syndrome: a retrospective study of the clinical presentation in 29 cats. *J Small Anim Pract*, **36**(11), 481-488

CORCORAN BM, COBB M, MARTIN MWS, DUKES-McEWAN J, FRENCH A, LUIS FUENTES V *et al.* (1999a). Chronic pulmonary disease in West Highland White Terriers. *Vet Rec*, **144**(22), 611-616

CORCORAN BM, DUKES-McEWAN J, RHIND S, FRENCH A (1999b). Idiopathic pulmonary fibrosis in a Staffordshire bull terrier with hypothyroidism. *J Small Anim Pract*, **40**(4), 185-188

CORCORAN BM, KING LG, SCHWARZ T, HAMMOND G, SULLIVAN M (2011). Further characterisation of the clinical features of chronic pulmonary disease in West Highland white terriers. *Vet Rec*, **168**(13), 355a

CORNELL KK, KOPCHA M (2007). Client-veterinarian communication: skills for client centered dialogue and shared decision making. *Vet Clin Small Anim*, **37**(1), 37-47

COYNE BE, FINGLAND RB (1992). Hypoplasia of the trachea in dogs: 103 cases (1974-1990). *JAVMA*, **201**(5), 768-772

DALLMAN MJ, McCLURE RC, BROWN EM (1988). Histochemical study of normal and collapsed tracheas in dogs. *Am J Vet Res*, **49**(12), 2117-2125

DAVIDSON EB, DAVIS MS, CAMPELL GA (2001). Evaluation of carbon dioxide laser conventional incisional techniques for resection of soft palates in brachycephalic dogs. *J Am Vet Med Assoc*, **219**(6), 776-781

DE LORENZI D, BERTONCELLO D, DRIGO M (2009). Bronchial abnormalities found in a consecutive series of 40 brachycephalic dogs. *JAVMA*, **235**(7), 835-840

DEAN MJ, STRAFUSS AC (1975). Carotid body tumors in the dog: a review and report of four cases. *JAVMA*, **166**(10), 1003-1006

DEAR JD (2014). Bacterial pneumonia in dogs and cats. Vet Clin Small Anim, 44(1), 143-159

DEMEDTS M, BEHR J, BUHL R, COSTABEL U, DEKHUIJZEN R, JANSEN HM *et al.* (2005). High dose acetylcysteine in idiopathic pulmonary fibrosis. *N Engl J Med*, **353**(21), 2229-2242

DENGATE A, CULVENOR JA, GRAHAM K, BRADDOCK JA, CHURCHER RK (2014). Bronchial stent placement in a dog with bronchomalacia and left atrial enlargement. *J Small Anim Pract*, **55**(4), 225-228

DOWSE R, RAMELA T, BROWNE SH (2011). An illustrated leaflet containing antiretroviral information targeted for low-literate readers: development and evaluation. *Patient Educ Couns*, **85**(3), 508-515

DUCAROUGE B (2002). Le syndrome obstructif des voies respiratoires supérieures chez les chiens brachycéphales. Etude clinique à propos de 27 cas. Thèse Méd. Vet., Lyon, n°16

DUNIÉ-MÉRIGOT A, BOUVY B, PONCET C (2010). Comparative use of CO₂ laser, diode laser and monopolar electrocautery for resection of the soft palate in dogs with brachycephalic airway obstructive syndrome. *Vet Rec*, **167**(18), 700-704

DURANT AM, SURA P, ROHRBACH B, BOHLING MW (2012). Use of nitinol stents for end-stage tracheal collapse in dogs. *Vet Surg*, **41**(7), 807-817

DYE JA, McKIERNAN BC, ROZANSKI EA, HOFFMANN WE, LOSONSKY JM, HOMCO LD *et al.* (1996). Bronchopulmonary disease in the cat: historical, physical, radiographic, clinicopathologic and pulmonary functional evaluation of 24 affected and 15 healthy cats. *J Vet Intern Med*, **10**(6), 385-400

ELLISON GW (2004). Alapexy: an alternative technique for repair of stenotic nares in dogs. *J Am Anim Hosp Assoc*, **40**(6), 484-489

ELWYN G, LLOYD A, JOSEPH-WILLIAMS N, CORDING E, THOMSON R, DURAND MA *et al.* (2013). Option grids: shared decision making made easier. *Patient Educ Couns*, **90**(2), 207-212

ETTINGER SJ (2010). Diseases of the Trachea and Upper Airways. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 1066-1088

FASANELLA FJ, SHIVLEY M, WARDLAW JL, GIVARUANGSAWAT S (2010). Brachycephalic airway obstructive syndrome in dogs: 90 cases (1991-2008). *JAVMA*, **237**(9), 1048-1051

FONFARA S, DE LA HERAS ALEGRET L, GERMAN AJ, BLACKWOOD L, DUKES-McEWAN J, NOBLE PJM *et al.* (2011). Underlying diseases in dogs referred to a veterinary teaching hospital because of dyspnea: 229 cases (2003-2007). *J Am Vet Med Assoc* **239**(9), 1219-1224

FOSTER SF, ALLAN GS, MARTIN P, ROBERTSON ID, MALIK R (2004a). Twenty-five cases of feline bronchial disease (1995-2000). *J Feline Med Surg*, **6**(3), 181-188

FOSTER SF, MARTIN P, BRADDOCK JA, MALIK R (2004b). A retrospective analysis of feline bronchoalveolar cytology and microbiology (1995-2000). *J Feline Med Surg*, **6**(3), 189-198

GRAND JGR, BUREAU S (2011). Structural characteristics of the soft palate and meatus nasopharyngeus in brachycephalic and non-brachycephalic dogs analysed by CT. *J Small Anim Pract*, **52**(5), 232-239

HASKINS SC (2004). Interpretation of blood gas measurements. In: KING LG. Textbook of respiratory disease in dogs and cats. St Louis, Saunders Elsevier, 181-193

HAWKINS EC, DeNICOLA DB, KUEHN NF (1990). Bronchoalveolar lavage in the evaluation of pulmonary disease in the dog and cat. State of the art. *J Vet Intern Med*, **4**(5), 267-274

HAWKINS EC, CLAY LD, BRADLEY JM, DAVIDIAN M (2010). Demographic and Historical Findings, Including Exposure to Environmental Tobacco Smoke, in Dogs with Chronic Cough. *J Vet Intern Med*, **24**(4), 825-831

HAWKINS EC (2013a). Disorders of the Trachea and Bronchi. In: NELSON RW, COUTO CG. Small Animal Internal Medicine. 5th ed. St Louis, Elsevier Mosby, 297-315

HAWKINS EC (2013b). Disorders of the Pulmonary Parenchyma and Vasculature. In: NELSON RW, COUTO CG. Small Animal Internal Medicine. 5th ed. St Louis, Elsevier Mosby, 316-336

HAYES HM (1975). An hypothesis for the aetiology of canine chemoreceptor system neoplasms, based upon an epidemiological study of 73 cases among hospital patients. *J Small Anim Pract*, **16**(5), 337-343

HAYWARD N, SCHWARZ T, WEISSE C (2008). The trachea. In: SCHWARZ T, JOHNSON V. BSAVA Manual of Canine and Feline Thoracic Imaging. Quedgeley (England), BSAVA, 213-227

HEIKKILÄ HP, LAPPALAINEN AK, DAY MJ, CLERCX C, RAJAMÄKI MM (2011). Clinical, bronchoscopic, histopathologic, diagnostic imaging, and arterial oxygenation findings in West Highland White Terriers with idiopathic pulmonary fibrosis. *J Vet Intern Med*, **25**(3), 433-439

HEIKKILÄ HP, KRAFFT E, JESPERS P, McENTEE K, RAJAMÄKI MM, CLERCX C (2013). Procollagen type III amino terminal propeptide concentrations in dogs with idiopathic pulmonary fibrosis compared with chronic bronchitis and eosinophilic bronchopneumopathy. *Vet J*, **196**(1), 52-56

HEIKKILÄ HP, RAJAMÄKI MM (2014). Idiopathic pulmonary fibrosis in West Highland White Terrier. *Vet Clin Small Anim*, **44**(1), 129-142

HEMMELGARN C, GANNON K (2013a). Heatstroke: thermoregulation, pathophysiology and predisposing factors. *Compend Contin Educ Pract Vet*, **35**(7), E1-E6

HEMMELGARN C, GANNON K (2013b). Heatstroke: clinical signs, diagnosis, treatment and prognosis. *Compend Contin Educ Pract Vet*, **35**(7), E1-E7

HIRT RA, LEINKER S, MOSING M, WIEDERSTEIN I (2008). Comparison of barometric whole body plethysmography and its derived parameter enhanced pause (PENH) with conventional respiratory mechanics in healthy Beagle dogs. *Vet J*, **176**(2), 232-239

HOAREAU GL, JOURDAN G, MELLEMA M, VERWAERDE P (2012). Evaluation of arterial blood gases and arterial blood pressures in brachycephalic dogs. *J Vet Intern Med*, **26**(4), 897-904

HOMO ON (2008). Intérêt de l'endoscopie dans le diagnostic du syndrome brachycéphale du chien. Etude de 28 cas. Thèse Méd. Vét., Alfort, n° 46

HOUTS PS, DOAK CC, DOAK LG, LOSCALZO MJ (2006). The role of pictures in improving health communication: a review of research on attention, comprehension, recall, and adherence. *Patient Educ Cons*, **61**(2), 173-190

HUCK JL, STANLEY BJ, HAUPTMAN JG (2008). Technique and outcome of nares amputation (Trader's technique) in immature shih tzus. *J Am Anim Hosp Assoc*, **44**(2), 82-85

JOHNSON LR, KRAHWINKEL DJ, McKIERNAN BC (1993). Surgical management of atypical lateral tracheal collapse in a dog. *J Am Vet Med Assoc*, **203**(12), 1693-1696

JOHNSON L, BOON J, ORTON EC (1999). Clinical Characteristics of 53 Dogs with doppler-derived evidence of pulmonary hypertension: 1992-1996. *J Vet Intern Med*, **13**(5), 440-447

JOHNSON LR, FALES WH (2001). Clinical and microbiologic findings in dogs with bronchoscopically diagnosed tracheal collapse: 37 cases (1990-1995). *J Am Vet Med Assoc*, **219**(9), 1247-1250

JOHNSON VS, CORCORAN BM, WOTTON PR, SCHWARZ T, SULLIVAN M (2005). Thoracic high-resolution computed tomographic findings in dogs with canine idiopathic pulmonary fibrosis. *J Small Anim Pract*, **46**(8), 381-388

JOHNSON A, STANDFORD J (2005). Written and verbal information versus verbal information only for patients being discharged from acute hospital settings to home: systemic review. *Health Educ Res*, **20**(4), 423-429

JOHNSON LR, POLLARD RE (2010). Tracheal collapse and bronchomalacia in dogs: 58 cases (7/2011 – 1/2008). *J Vet Intern Med*, **24**(2), 298-305

JOHNSON LR, QUEEN EV, VERNAU W, SYKES JE, BYRNE BA (2013). Microbiologic and cytologic assessment of bronchoalveolar lavage fluid from dogs with lower respiratory tract infection: 105 cases (2001-2011). *J Vet Intern Med*, **27**(2), 259-267

KELLIHAN HB (2010). Pulmonary Hypertension and Pulmonary Thromboembolism. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 1138-1141

KELLUM HB, STEPIEN RL (2007). Sildenafil citrate therapy in 22 dogs with pulmonary hypertension. *J Vet Intern Med*, **21**(6), 1258-1264

KIRSCHVINK N, LEEMANS J, DELVAUX F, SNAPS F, MARLIN D, SPARKES A *et al.* (2006). Non-invasive assessment of growth, gender and time of day related changes of respiratory pattern in healthy cats by use of barometric whole body plethysmography. *Vet J*, **172**(3), 446-454

KIRSCHVINK N, LEEMANS J, DELVAUX F, SNAPS F, CLERCX C, GUSTIN P (2007). Non-invasive assessment of airway responsiveness in healthy and allergen-sensitised cats by use of barometric whole body plethysmography. *Vet J*, **173**(2), 343-352

KOGAN LR, GOLDWASER G, STEWART SM, SCHOENFELD-TACHER R (2008). Sources and frequency of use of pet health information and level of confidence in information accuracy, as reported by owners visiting small animal veterinary practices. *J Am Vet Med Assoc*, **232**(10), 1536-1542

KRAFFT E, HEIKKILÄ HP, JESPERS P, PEETERS D, DAY MJ, RAJAMÄKI MM *et al.* (2011). Serum and bronchoalveolar lavage fluid endothelin-1 concentrations as diagnostic biomarkers of canine idiopathic pulmonary fibrosis. *J Vet Intern Med*, **25**(5), 990-996

KRAFFT E, LAURILA HP, PETERS IR, BUREAU F, PEETERS D, DAY MJ *et al.* (2013). Analysis of gene expression in canine idiopathic pulmonary fibrosis. *Vet J*, **198**(2), 479-486

LACORCIA L, GASSER RB, ANDERSON GA, BEVERIDGE I (2009). Comparison of bronchoalveolar lavage fluid and other diagnostic techniques with Baermann technique for detection of naturally occurring *Aerulostrongylus abstrusus* infection in cats. *J Am Vet Med Assoc*, **235**(1), 43-49

LANIESSE D (2011). Réalisation de fiches conseil pour les propriétaires de NAC en complément à la consultation : oiseaux et reptiles. Thèse Méd. Vet., Alfort, n°17

LECOINDRE P, RICHARD S (2004). Digestive disorders associated with the chronic obstructive respiratory syndrome of brachycephalic dogs: 30 cases (1999-2001). *Rev Méd Vet*, **155**(3), 141-146

LEE-FOWLER TM, COHN LA, DECLUE AE, SPINKA CM, ELLEBRACHT RD, REINERO CR (2009). Comparison of intradermal skin testing (IDST) and serum allergen-specific IgE determination in an experimental model of feline asthma. *Vet Immunol Immunopathol*, **132**(1), 46-52

LEEMANS J, CAMBIER C, CHANDLER T, BILLEN F, CLERCX C, KIRSCHVINK N *et al.* (2010). Prophylactic effects of omega-3 polyunsaturated fatty acids and luteolin on airway hyperresponsiveness and inflammation in cats with experimentally-induced asthma. *Vet J*, **184**(1), 111-114

LEEMANS J, KIRSCHVINK N, CLERCX C, SNAPS F, GUSTIN P (2012). Effect of short-term oral and inhaled corticosteroids on airway inflammation and responsiveness in a feline acute asthma model. *Vet J*, **192**(1), 41-48

LEONARD HC (1960). Collapse of the larynx and adjacent structures in the dog. J Am Vet Med Assoc, 137, 360-363

LILJA-MAULA LIO, LAURILA HP, SYRJÄ P, LAPPALAINEN AK, KRAFFT E, CLERCX C *et al.* (2014). Long-term outcome and use of 6-minute walk test in West Highland White Terriers with idiopathic pulmonary fibrosis. *J Vet Intern Med*, **28**(2), 379-385

LOBETTI RG, MILNER R, LANE E (2001). Chronic idiopathic pulmonary fibrosis in five dogs. *JAAHA*, **37**(2), 119-127

LODATO DL, HEDLUND CS (2012a). Brachycephalic airway syndrome: pathophysiology and diagnosis. *Compend Contin Educ Pract Vet*, **34**(7), E1-E5

LODATO DL, HEDLUND CS (2012b). Brachycephalic airway syndrome: management. *Compend Contin Educ Pract Vet*, **34**(8), E1-E7

LOPEZ A (2012). Diseases of the respiratory system. In: ZACHARY JF, McGAVIN MD. Pathologic Basis of Veterinary Disease. 5th ed. St Louis, Elsevier Mosby, 465-538

LUE TW, PANTENBURG DP, CRAWFORD PM (2008). Impact of the owner-pet and client-veterinarian bond on the care that pets receive. *J Am Vet Med Assoc*, **232**(4), 531-540

MACREADY DM, JOHNSON LR, POLLARD RE (2007). Fluoroscopic and radiographic evaluation of tracheal collapse in dogs: 62 cases (2001-2006). *J Am Vet Med Assoc*, **230**(12), 1870-1876

MAGGIORE AD (2014). Tracheal and airway collapse in dogs. Vet Clin Small Anim, 44(1), 117-127

MANENS J, BOLOGNIN M, BERNAERTS F, DIEZ M, KIRSCHVINK N, CLERCX C (2012). Effects of obesity on lung function and airway reactivity in healthy dogs. *Vet J*, **193**(1), 217-221

MANENS J, RICCI R, DAMOISEAUX C, GAULT S, CONTIERO B, DIEZ M *et al.* (2014). Effect of body weight loss on cardiopulmonary function assessed by 6-minute walk test and arterial blood gas analysis in obese dogs. *J Vet Intern Med*, **28**(2), 371-378

MANSOOR LE, DOWSE R (2003). Effect of pictograms on readability of patient information materials. *Ann Pharmacother*, **37**(7-8), 1003-1009

MANSOOR LE, DOWSE R (2007). Written medicines information for South African HIV/AIDS patients: does it enhance understanding of co-trimoxazole therapy? *Health Educ Res*, **22**(1), 37-48

MAROLF A, BLAIK M, SPECHT A (2007). A retrospective study of the relationship between tracheal collapse and bronchiectasis in dogs. *Vet Radiol Ultasound*, **48**(3), 199-203

McPHAIL CM (2013). Surgery of the upper respiratory system. In: FOSSUM TW. Small Animal Surgery. 4th ed. St Louis, Elsevier Mosby, 906-957

MERCURIO A (2011). Complication of upper airway surgery in companion animals. *Vet Clin Small Anim*, **41**(5), 969-980

MEAKIN LB, SALONEN LK, BAINES SJ, BROCKMAN DJ, GREGORY SP, HALFACREE ZJ et al. (2013). Prevalence, outcome and risk factors for postoperative pyothorax in 232 undergoing thoracic surgery. J Small Anim Pract, **54**(6), 313-317

MELAMIES M, VAINIO O, SPILLMANN T, JUNNILA J, RAJAMÄKI MM (2012). Endocrine effects of inhaled budesonide compared with inhaled fluticasone proprionate and oral prednisolone in healthy Beagle dogs. *Vet J*, **194**(3), 349-353

MESQUITA L, LAM R, LAMB CR, McCONNELL JF (2014). Computed tomographic findings in 15 dogs with eosinophilic bronchopneumopathy. *Vet Radiol Ultrasound*, à paraître, doi: 10.1111/vru.12187

MONNET E (2003). Brachycephalic airway syndrome. In: SLATTER D. Textbook of small animal surgery. 3rd ed. Philadelphia, WB Saunders, 808-813

MONTGOMERY JE, MATHEWS KG, MARCELLIN-LITTLE DJ, HENDRICK S, BROWN JC (2014). Comparison of radiography and computed tomography determining tracheal diameter and length in dogs. *Vet Surg*, à paraître, doi: 10.1111/j.1532-950X.2014.12227.x

MORITZ A, SCHNEIDER M, BAUER N (2004). Management of advanced tracheal collapse in dogs using intraluminal self-expanding biliary wall stents. *J Vet Intern Med*, **18**(1), 31-42

MOSER JE, GEELS JJ (2013). Migration of extraluminal ring prostheses after tracheoplasty for treatment of tracheal collapse in a dog. *J Am Vet Med Assoc*, **243**(1), 102-104

NAFE LA, DECLUE AE, LEE-FOWLER TM, EBERHARDT JM, REINERO CR (2010). Evaluation of biomarkers in bronchoalveolar lavage fluid for discrimination between asthma and chronic bronchitis in cats. *Am J Vet Res*, **71**(5), 583-591

NORRIS AJ, NAYDAN DK, WILSON DW (2005). Interstitial lung disease in West Highland White Terriers. *Vet Pathol*, **42**(1), 35-41

OLIVEIRA CR, RANALLO FN, PIJANOWSKI GJ, MITCHELL MA, O'BRIEN MA, McMICHAEL M *et al.* (2011a). The VetMousetrapTM: a device for computed tomographic imaging of the thorax of awake cats. *Vet Radiol Ultrasound*, **52**(1), 41-52

OLIVEIRA CR, MITCHELL MA, O'BRIEN RT (2011b). Thoracic computed tomography in feline patients without use of chemical restraint. *Vet Radiol Ultrasound*, **52**(4), 368-376

PACKER RMA, HENDRICKS A, BURN CC (2012). Do dog owners perceive the clinical signs related to conformational inherited disorders as 'normal' for the breed? A potential constraint to improving canine welfare. *Anim Welfare*, **21**(S1), 81-93

PADRID PA, HORNOF WJ, KIRPERSHOEK CJ, CROSS CE (1990). Canine chronic bronchitis. A pathophysiologic evaluation of 18 cases. *J Vet Intern Med*, **4**(3), 172-180

PARNELL NK (2010). Diseases of the throat. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 1040-1047

PHAN A, YATES GD, NIMMO J, HOLLOWAY SA (2013). Syncope associated with swallowing in two British Bulldogs with unilateral carotid body tumours. *Aust Vet J*, **91**(1-2), 47-51

PILOT-STORCK F (2009). Physiologie de la respiration. Ecole Nationale Vétérinaire d'Alfort, Unité Pédagogique de Physiologie, 124p.

PLANTÉ A (2011). Élaboration de fiches conseils petits mammifères à destination des propriétaires de nouveaux animaux de compagnie (NAC). Thèse Méd. Vét., Alfort, n°18

PLOPPER CG, ADAMS DR (2006). Respiratory System. In: EURELL JA, FRAPPIER BL. Dellmann's Textbook of Veterinary Histology. 6th ed. Ames, Blackwell, 153-169

PONCET CM, DUPRE GP, FREICHE VG, ESTRADA MM, POUBANNET YA, BOUVY BM (2005). Prevalence of gastrointestinal tract lesions in 73 brachycephalic dogs with upper respiratory syndrome. *J Small Anim Pract*, **46**(6), 273-279

PONCET CM, DUPRE GP, FREICHE VG, BOUVY BM (2006). Long-term results of upper respiratory syndrome surgery and gastrointestinal tract medical treatment in 51 brachycephalic dogs. *J Small Anim Pract*, **47**(3), 137-142

RAGHU G, ANSTROM KJ, KING TE, LASKY JA, MARTINEZ FJ (2012). Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. *N Engl J Med*, **366**(21), 1968-1977

RAJAMÄKI MM, JÄRVINEN AK, SAARI S, MAISI P (2001). Cytological findings and effect of sequential bronchoalveolar lavages in healthy beagles. *Am J Vet Res*, **62**(1), 13-16

RAJAMÄKI MM, JÄRVINEN AK, SORSA T, MAISI P (2002). Clinical findings, bronchoalveolar lavage fluid cytology and matrix metalloproteinase-2 and -9 in canine pulmonary eosinophilia. *Vet J*, **163**(2), 168-181

REINERO CR, DECILE KC, BYERLY JR, BERGHAUS RD, WALBY WF, BERGHAUS LJ *et al.* (2005). Effects of drug treatment on inflammation and hyperreactivity of airways and on immune variables in cats with experimentally induced asthma. *Am J Vet Res*, **66**(7), 1121-1127

REINERO CR, BYERLY JR, BERGHAUS RD, BERGHAUS LJ, SCHELEGLE ES, HYDE DM *et al.* (2006). Rush immunotherapy in an experimental model of feline allergic asthma. *Vet Immunol Immopathol*, **110**(1-2), 141-153

REINERO CR, COHN LA, DELGADO C, SPINKA CM, SCHOOLEY EK, DECLUE AE (2008). Adjuvanted rush immunotherapy using CpG oligodeoxynucleotides in experimental feline allergic asthma. *Vet Immunol Immunopathol*, **121**(3-4), 241-250

REINERO CR (2011). Advances in the understanding of pathogenesis, and diagnostics and therapeutics for feline allergic asthma. Vet J, **190**(1), 28-33

REINERO C, LEE-FOWLER T, CHANG CH, COHN L, DECLUE A (2012). Beneficial cross-protection of allergen-specific immunotherapy on airway eosinophilia using unrelated repertoire of allegen(s) implicated in experimental feline asthma. *Vet J*, **192**(3), 412-416

RIECKS TW, BIRCHARD J, STEPHENS JA (2007). Surgical correction of brachycephalic syndrome in dogs: 62 cases (1991-2004). *JAVMA*, **230**(9), 1324-1328

ROELS E, BOLEN G, CLERCX C (2014). Suspicion de fibrose pulmonaire idiopathique chez un West Highland White Terrier. *Le Monde Vétérinaire*, **139**, 23-27

ROZANSKI E (2014). Canine chronic bronchitis. Vet Clin Small Anim, 44(1), 107-116

SCHOBER KE, BAADE H (2006). Doppler echocardiographic prediction of pulmonary hypertension in West Highland White Terriers with chronic pulmonary disease. *J Vet Intern Med*, **20**(4), 912-920

SCHULMAN RL (2010). Weakness. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 148-152

SILVERSTEIN DC, DROBATZ KJ (2010). Clinical Evaluation of the Respiratory Tract. In: ETTINGER SJ, FELDMAN EC. Textbook of Veterinary Internal Medicine. 7th ed. St Louis, Saunders Elsevier, 1055-1066

STILLMAN BA, MONN M, LIU J, THATCHER B, FOSTER P, ANDREWS B *et al.* (2014). Performance of a commercially available in-clinic ELISA for detection of antibodies against *Anaplasma phagocytophilum*, *Anaplasma platys*, *Borrelia burgdorferi*, *Ehrlichia canis*, and *Ehrlichia ewingii* and *Dirofilaria immitis* antigen in dogs. *JAVMA*, **245**(1), 80-86

SURA PA, KRAHWINKEL DJ (2008). Self-extending nitinol stents for the treatment of tracheal collapse in dogs: 12 cases (2001-2004). *J Am Vet Med Assoc*, **232**(2), 228-236

SWIMMER RA, ROZANSKI (2011). Evaluation of the 6-minute walk test in pet dogs. *J Vet Intern Med*, **25**(2), 405-406

SYRJÄ P, HEIKKILÄ HP, LILJA-MAULA L, KRAFFT E, CLERCX C, DAY MJ et al. (2013). The histopathology of idiopathic pulmonary fibrosis in West Highland White Terriers shares features of both non-specific interstitial pneumonia and usual interstitial pneumonia in man. *J Comp Path*, **149**(2-3), 303-313

SZABO D, SUTHERLAND-SMITH J, BARTON B, ROZANSKI EA, TAEYMANS O (2014). Accuracy of a computed tomography bronchial wall thickness to pulmonary artery diameter ratio for assessing bronchial wall thickening in dogs. *Vet Radiol Ultrasound*, à paraître, doi: 10.1111/vru.12216

TALAVERA J, KIRSCHVINK N, SCHULLER S, LE GARRERES A, GUSTIN P, DETILLEUX J *et al.* (2006). Evaluation of respiratory function by barometric whole-body plethysmography in healthy dogs. *Vet J*, **172**(1), 67-77

TANGNER CH, HOBSON HP (1982). A retrospective study of 20 surgically managed cases of collapsed trachea. *Vet Surg*, **11**(4), 146-149

TORREZ CV, HUNT GB (2006). Results of surgical correction of abnormalities associated with brachycephalic airway obstruction syndrome in dogs in Australia. *J Small Anim Pract*, **47**(3), 150-154

TRAPPLER M, MOORE KW (2011a). Canine brachycephalic airway syndrome: pathophysiology, diagnosis, and nonsurgical management. *Compend Contin Educ Pract Vet*, **33**(5), E1-E5

TRAPPLER M, MOORE KW (2011b). Canine brachycephalic airway syndrome: surgical management. *Compend Contin Educ Pract Vet*, **33**(5), E1-E8

TRZIL JE, REINERO CR (2014). Update on feline asthma. Vet Clin Small Anim, 44(1), 91-105

WHITE RAS, WILLIAMS JM (1994). Tracheal collapse in the dog – is there really a role for surgery? A survey of 100 cases. *J Small Anim Pract*, **35**(4), 191-196

WHITE RN (2012). Surgical management of laryngeal collapse associated with brachycephalic airway obstruction syndrome in dogs. *J Small Anim Pract*, **53**(1), 44-50

ANNEXES

LES DOCUMENTS D'INFORMATIONS MÉDICALES

Annexe 1. Document d'information médicale présentant le syndrome obstructif des races brachycéphales

OBSTRUCTIF des RACES BRACHYCEPHALES Le SYNDROME

QU'EST-CE QUE LE SYNDROME OBSTRUCTIF DES RACES BRACHYCEPHALES (SORB)?

Il regroupe plusieurs malformations dont certaines présentes dès la naissance (elles sont dites primaires). Les autres sont des conséquences des malformations primaires, liées à l'inflammation et aux efforts Le SORB est une maladie affectant les races brachycéphales, c'est-à-dire les chiens au nez aplati. respiratoires augmentés.

ventricules) peuvent se déplacer et totalement s'affaisser et ne laisser passer que très peu d'air vers les boucher son entrée ou, dans les cas les plus graves, il peut Elles peuventêtre rétrécies et présenter des lésions inflamme obstructives (granulomes). s'affaisser et empécher l'air de Certains de ses éléments (les Secondaires aux efforts respir mmation Elles peuventégalement augmentés et à linfla Trachée/bronches Conséquences nasales Malformations primaires Présentes dès la naissance Narines Elies ne sont pas assez cuvertes et ne laissent donc pas bien passer fair épais Langue Elle prend trop de place dans la bouche et peut géner le passage de l'air Elle présente un diamètre trop petit (principalement chez les bouledogues) Il est trop long ou trop et peut done boucher! Trachée

Le SORB provoque souvent des ronflements et des difficultés respiratoires mais aussi des troubles digestifs (vomissements ou régurgitations) Si les malformations ne sont pas corrigées, les signes cliniques de votre animal risquent de s'aggraver et parfois donner lieu à des maladies plus graves telles qu'une détresse respiratoire ou une infection pulmonaire par fausse déglutition (si votre animal « avale de travers »).

COMMENT LE DIAGNOSTIQUER

Confirmer l'existence d'un SORB est facile, il faut toutefois déterminer quelles sont les malformations présentes chez votre animal.

Analyses sanguines

qu'il ne présente pas de risque supplémentaire pour subir une Leur principal intérêt est de vérifier que votre chien va bien et

anesthésie

Radiographies thoraciques

Elles permettent

- D'évaluer le diamètre de la trachée de votre animal.
- De s'assurer qu'il n'a pas une autre maladie qui pourrait contre-indiquer une anesthésie

Grâce à une petite caméra introduite par la bouche de votre

Bronchoscopie

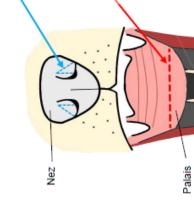
chien, elle permet de visualiser Le palais.

- Le larynx et ses ventricules.
 - La trachée et les bronches.
- Les cavités nasales

Elle est indispensable avant d'envisager une chirurgie

LÉGENDE

Une prise de sang est nécessaire


Une anesthésie est nécessaire et peut

comporter un risque 2,2

COMMENT TRAITER LE SORB ?

FRAITEMENT

Il n'existe pas de médicament permettant de soigner votre animal du SORB, **seule une chirurgie** le peut. Elle s'effectue en plusieurs étapes expliquées ci-dessous.

Rhinoplastie = une portion pyramidale du cartilage nasal est incisée et

COMPLICATIONS POSSIBLES: Déhiscence des sutures → saignement.

résorbable ce qui permet d'élargir l'ouverture des narines (par traction). retirée de chaque côté. Les bords sont ensuite suturés avec du fil nonPalatoplastie = le palais est désépaissi et sa portion la plus caudale est excisée. Afin d'éviter les saignements, il est ensuite suturé avec du fil résorbable.

COMPLICATIONS POSSIBLES : Réaction inflammatoire - détresse respiratoire. Fausse déglutition 🛡 infection pulmonaire. Exérèse des ventricules laryngés = s'ils sont éversés, ils peuvent eux aussi être excisés afin de faciliter le passage de l'air dans le larynx.

COMPLICATIONS POSSIBLES: Aucune

Lanynx

Pour surveiller l'apparition éventuelle de ces complications et pouvoir intervenir au plus vite, une hospitalisation de 48h est fortement recommandée après la chirurgie

RECOMMANDATIONS AU QUOTIDIEN

Maintenez votre chien à son poids idéal

Utilisez un harnais plutôt qu'un collier

Évitez le stress et les exercices trop intenses

QUEL EST LE PRONOSTIC **APRÈS LA CHIRURGIE ?**

Même si elles peuvent être graves, les complications suite à la chirurgie sont assez rares

En l'absence de complications, le pronostic est bon

Il est possible que votre chien continue de présenter des ronflements après la chirurgie.

de vie sera toutefois bien Sa qualité meilleure!

CE QU'IL FAUT SURVEILLER

Même après l'hospitalisation, certaines complications peuvent survenir. Ainsi, si votre animal présente :

- Une respiration difficile, bruyante ou avec la bouche ouverte.
- Un abattement.
- Une baisse d'appétit
- De la fièvre (T°C > 39,2°C).

Il faut qu'il soit vu en urgence par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

Pour tout autre problème ou question concernant la cliniciens responsables grâce aux adresses mail indiquées maladie de votre animal, vous pouvez joindre l'un des sur l'ordonnance.

Annexe 2. Document d'information médicale présentant la bronchite chronique canine.

QU'EST-CE QUE LA BRONCHITE CHRONIQUE DU CHIEN

La bronchite chronique du chien se caractérise par une **toux quotidienne** évoluant depuis plusieurs mois à plusieurs années. Elle est due à des modifications des parois des bronches (les bronches sont les conduits qui permettent l'acheminement de l'air aux poumons) causées par des **agressions répétées** tout au long de la vie de l'animal (les maladies respiratoires bénignes, la poussière inhalée, la fumée de tabac, etc.).

Bronchite chronique Irrégularités **Bronche saine**

lumière bronchique et peuvent donc gêner le passage de l'air jusqu'aux Elles diminuent le diamètre de la Suomnod

Inflammation

Elle provoque une irritation de la paroi bronchique et est responsable de la toux de votre chien.

Il est produit en plus grande quantité à cause de l'inflammation et ne peut pas être correctement expulsé. s'accumule donc et diminue le

Lumière bronchique

(passage de l'air)

diamètre de la lumière bronchique.

la quantité de mucus accumulée) et parfois des par Elle provoque principalement une toux grasse (de difficultés respiratoires ou une intolérance à l'effort.

pas traitée, la bronchite chronique peut causer des lésions irréversibles, des surinfections Demandez conseil à votre vétérinaire. elle n'est S

bactériennes ou une hypertension pulmonaire (pouvant fatiguer le cœur)

COMMENT LA DIAGNOSTIQUER

De nombreuses maladies peuvent causer de la toux. est donc important de les exclure chez votre chien.

Analyses sanguines

Leur principal intérêt est de vérifier que votre animal va bien et qu'il ne présente pas de risque supplémentaire pour subir une anesthésie.

Radiographies thoraciques

Elles permettent

- D'évaluer l'aspect des bronches et des poumons qui est souvent modifié lors de bronchite chronique.
- De vérifier qu'il n'a pas une autre maladie cardiaque ou respiratoire qui pourrait aggraver ses signes cliniques.

Bronchoscopie

l'examen de choix pour diagnostiquer la bronchite chronique. chien, elle permet de visualiser ses bronches et d'évaluer la Couplé au lavage broncho-alvéolaire (voir ci-dessous), c'est Grâce à une petite caméra introduite par la bouche de votre gravité de leur atteinte.

Lavage broncho-alvéolaire

Il est réalisé lors de la bronchoscopie.

njectant un liquide stérile aussitôt ré-aspiré. Certaines cellules Il permet de prélever des cellules des voies respiratoires en y sont caractéristiques de la bronchite chronique.

Il permet aussi de s'assurer qu'il n'y a pas de surinfection bactérienne.

Outre le risque anesthésique, cette procédure est sans danger pour la vie de votre animal

LÉGENDE

Une prise de sang est nécessaire

Les analyses sont envoyées Les résultats ne seront pas dans un laboratoire

disponibles immédiatement

comporter un risque

Une anesthésie est nécessaire et peut

En plus de cette maladie, votre chien peut présenter d'autres affections cardiaques ou respiratoires

Paroi bronchique

COMMENT TRAITER LA BRONCHITE CHRONIQUE ?

TRAITEMENT

Anti-inflammatoires (corticoides)

Ils limitent l'inflammation bronchique donc la toux et l'accumulation de mucus.

2 voies d'administration différentes existent :

Coût mensuel	Le moins cher	Le plus cher	
Risque d'effets Indésirables	Important	Faible	
Principe actif	Prednisolone	Fluticasone	
Voie d'administration	Orale	Inhalée	

d'un dispositif particulier. Des inhalée nécessite l'utilisation La voie d'administration disponibles sur internet. vidéos expliquant son fonctionnement sont

(AeroDawg®) dans la barre Entrez le nom du dispositif de recherche.

You Tube

L'avantage de la voie inhalée est de minimiser les effets secondaires des corticoïdes. Elle devra être privilègiée si un traitement au long cours est nécessaire.

EFFETS INDÉSIRABLES NOTABLES : augmentation de la faim et de la soif, prise de poids, maladies thrombo emboliques pulmonaires (rares)

Bronchodilatateurs

Ils augmentent l'effet des anti-inflammatoires et améliorent l'élimination du mucus

Le principe actif le plus couramment utilisé est la théophylline.

EFFETS INDÉSIRABLES NOTABLES : vomissements, diarrhée, troubles du rythme cardiaque, agitation, crises convulsives (rares)

Même si votre animal tousse, l'utilisation d'antitussifs est souvent contre-indiquée Demandez conseil à votre vétérinaire. CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÈSE VÉTÉRINAIRE PAR VINCENT LEYNAUD. IL NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION.

RECOMMANDATIONS AU QUOTIDIEN

Évitez les éléments pouvant provoquer la toux (fumée, aérosols, bougies parfumées, ...)

Demandez conseil à votre vétérinaire Votre chien peut profiter d'inhalations quotidiennes.

Utilisez un harnais plutôt qu'un collier

Maintenez votre chien à son poids idéal

Maintenez un environnement propre

QUEL EST LE PRONOSTIC AVEC **LE TRAITEMENT?**

Avec un traitement adapté et la mise en application des recommandations au quotidien, le pronostic est bon.

 Il se peut que votre chien ait besoin d'un traitement à vie

Il est possible qu'il continue de tousser Sa qualité de vie sera toutefois bien malgré le traitement.

Des récidives sont possibles. meilleure]

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi, si votre animal présente :

- Une aggravation soudaine de la toux Une respiration difficile.
- Un abattement.
- Une baisse d'appétit
- De la fièvre (T°C > 39,2°C)
- L'un des effets indésirables cités cicontre.

Il faut qu'il soit vu rapidement par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72 72 Service 7j/7, 24h/24

Pour tout autre problème ou question concernant la cliniciens responsables grâce aux adresses mail indiquées maladie de votre animal, vous pouvez joindre l'un des sur l'ordonnance.

Annexe 3. Documents d'information médicale présentant le collapsus trachéo-bronchique du chien

BRONCHIQUE du CHIEN

QU'EST-CE QUE LE COLLAPSUS TRACHÉO-BRONCHIQUE ?

poumons. Le collapsus trachéo-bronchique signifie qu'une partie de la trachée ou des bronches Lors de la respiration, l'air inspiré est véhiculé par la trachée et les bronches pour arriver jusqu'aux s'affaiblit et s'aplatit, parfois de façon permanente. L'air passe donc plus difficilement jusqu'aux

(moins d'oxygène pour Fatigue à l'effort (organisme) Air transmis aux poumous Partie collabée de la trachée Partie normale

Difficultés respiratoires OUX (irritation de la gorge) Respiration bruyante

de la trachée

En plus de cette maladie, votre chien peut présenter d'autres affections cardiaques ou respiratoires. Demandez conseil à votre vétérinaire.

S'il n'est pas traité, le collapsus trachéo-bronchique peut causer des lésions irréversibles, des surinfections bactériennes ou une hypertension pulmonaire (pouvant fatiguer le cœur)

COMMENT LE DIAGNOSTIQUER

De nombreuses maladies peuvent causer de la toux. Il est donc important de les exclure chez votre chien.

Analyses sanguines

Leur principal intérêt est de vérifier que votre animal va bien et qu'il ne présente pas de risque supplémentaire pour subir une anesthésie.

Radiographies cervicales et thoraciques

Elles permettent

- Dans certains cas seulement, de localiser le collapsus de votre animal.
 - De vérifier qu'il n'a pas une autre maladie cardiaque ou respiratoire qui pourrait aggraver ses signes cliniques.

Fluoroscopie

contrairement aux radiographies qui ne donnent qu'une image figée. Elle est donc plus précise que celles-ci pour identifier le Elle permet une visualisation des mouvements de la trachée

Bronchoscopie

chien, il est possible de visualiser sa trachée et ses bronches de Grâce à une petite caméra introduite par la bouche de votre Elle est beaucoup plus précise que les radiographies et la l'intérieur et donc de déterminer leur degré d'affaissement. fluoroscopie mais elle nécessite une anesthésie générale.

Examen tomodensitométrique (scanner)

est surtout utile lorsqu'une chirurgie est envisagée, parlez-en à sédation (toutefois moins risquée que l'anesthésie générale). Il est également très précis mais nécessite au minimum une votre vétérinaire.

LÉGENDE

Une prise de sang est

comporter un risque Une anesthésie est

COMMENT TRAITER LE COLLAPSUS TRACHÉO-BRONCHIQUE

Le traitement repose avant tout sur l'application de mesures hygiéniques (recommandations ci-dessous). Si cela s'avère nécessaire, un traitement médical peut être ajouté.

RECOMMANDATIONS AU QUOTIDIEN

Évitez les éléments pouvant provoquer la toux (fumée, aérosols, bougies parfumées, ...)

J. E

Évitez le stress et les exercices trop intenses

Maintenez un environnement propre

TRAITEMENT MÉDICAL

Antitussifs

Exemples de principes actifs : codéine, butorphanol, dextrometorphan, pentoxyvérine, codéthyline. Ils permettent d'interrompre la toux et donc de limiter l'aggravation des lésions de votre chien

EFFETS INDÉSIRABLES NOTABLES : sédation, constipation, perte d'efficacité

Anti-inflammatoires

Ils diminuent la toux en limitant l'inflammation trachéale et bronchique.

Exemple de principes actif : prednisolone.

EFFETS INDÉSIRABLES NOTABLES: augmentation de la faim et de la soif, prise de poids, maladies thromboemboliques pulmonaires (rares)

Bronchodilatateurs

Ils sont prescrits si les traitements ci-dessus ne sont pas suffisants.

Exemple de principes actif : théophylline.

EFFETS INDÉSIRABLES NOTABLES: vomissements, diarrhée, troubles du rythme cardiaque, agitation, crises convulsives (rares)

CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÈSE VÉTÉRINAIRE PAR VINCENT LEYNAUD. IL NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION.

QUEL EST LE PRONOSTIC AVEC **LE TRAITEMENT**

Avec un bon suivi des recommandations quotidiennes et (si nécessaire) un traitement médical adapté, le pronostic est **bon**.

 Il est possible que votre chien continue Sa qualité de vie sera toutefois bien de tousser malgré le traitement. meilleure !

Si, malgré tout, votre chien ne répond pas au traitement, il se peut qu'il ait besoin d'une chirurgie (parlez-en à votre vétérinaire)

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi, si votre animal présente :

- Une aggravation soudaine de la toux.
- Une respiration difficile.
 - Un abattement.
- Une baisse d'appétit.
- De la fièvre (T°C > 39,2°C)
- L'un des effets indésirables cités cicontre

Il faut qu'il soit vu rapidement par un vétérinaire.

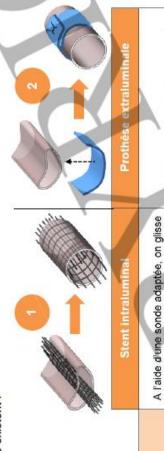
EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72

Service 7j/7, 24h/24

Pour tout autre problème ou question concernant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance.


Le COLLAPSUS TRACHÉO-BRONCHIQUE du CHIEN

COMMENT TRAITER LE COLLAPSUS TRACHÉO-BRONCHIQUE ?

TRAITEMENT CHIRURGICAL

malgré le traitement médical et l'application des mesures hygiéniques. La toux n'est donc pas une indication Le traitement chirurgical est indiqué si votre chien continue de présenter des signes d'insuffisance respiratoire 2 techniques différentes existent

On suture une prothèse (en bleu) autour parois vers l'extérieur et redonner à la de la partie collabée afin de tirer les trachée sa forme d'origine. redonner à la trachée sa forme d'origine

repousser les parois vers l'extérieur et

jusqu'à la partie collabée. Cette structure se déploie ensuite pour

Technique

une structure métallique (un stent)

Plus facile pour certaines zones de la trachée. Plus rapide.

Avantages

Plus durable.

Réaction inflammatoire importante. Migration du stent dans la trachée. Surinfection bactérienne. Rupture du stent.

COMPLICATIONS

Réaction inflammatoire importante. Nécrose de la trachée Paralysie laryngée.

Discutez avec le chirurgien pour déterminer laquelle est la plus adaptée pour votre chien.

Pour surveiller l'apparition éventuelle de ces complications et pouvoir intervenir au plus vite, une hospitalisation de 48h est fortement recommandée après la chirurgie.

QUEL EST LE PRONOSTIC APRÈS LA CHIRURGIE

Les complications ne sont pas rares et elles peuvent être très graves. Il est important d'appliquer les recommandations hygiéniques.

Sa qualité de vie globale sera toutefois bien Il est possible que votre chien continue de tousser après l'opération. meilleure!

CE QU'IL FAUT SURVEILLER

complications peuvent survenir. Ainsi, si votre Même après l'hospitalisation, certaines animal présente :

- Une forte aggravation de la toux.
- Une respiration difficile, bruyante ou avec la bouche ouverte.
- Un abattement.
- Une baisse d'appétit
- De la fièvre (T°C > 39,2°C).
- Un changement de voix.

Il faut qu'il soit vu en urgence par un vétérinaire.

EN CAS D'URGENCE

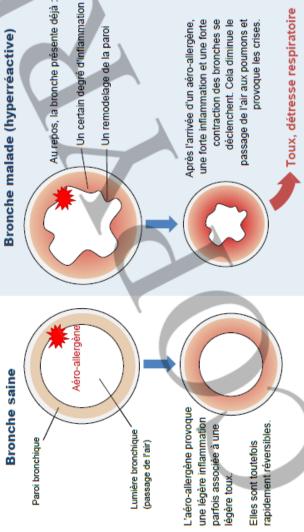
Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72 72

Service 7j/7, 24h/24

Pour tout autre problème ou question concernant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance.

Annexe 4. Document d'information médicale présentant les maladies bronchiques félines


BRONCHIQUES FELINES Les MALADIES

QUE SONT LES MALADIES BRONCHIQUES FÉLINES

un élément inhalé, appelé « aéro-allergène », présent dans l'environnement de votre chat (poussière, fumée de tabac, litière, aérosols, etc.). Cet aéro-allergène provoque la contraction brutale des bronches (aussi appelée « bronchospasme ») associée à une forte réaction inflammatoire, ce qui provoque les crises. Celles-Elles s'apparentent à l'asthme chez l'homme. Elles se manifestent par des **crises** souvent déclenchées par

Ces maladies se manifestent par des crises de toux ou de détresse respiratoire

Si elle n'est pas traitée, la maladie bronchique de votre chat peut causer des lésions irréversibles, un pneumothorax (accumulation d'air autour des poumons allant jusqu'à les comprimer) ou encore des surinfections bactériennes.

COMMENT LES DIAGNOSTIQUER

examens sont nécessaires pour confirmer sa maladie bronchique. Même si peu de maladies donnent de la toux chez le chat, des De plus, certaines causes infectieuses doivent être écartées.

Analyses sanguines

une éventuelle anesthésie.

bronchique. Elles permettent aussi de vérifier que votre animal va

bien et qu'il ne présente pas de risque supplémentaire pour subir

poumons qui sont souvent modifiés lors de maladie bronchique. Elles permettent d'évaluer les aspects des bronches et des Radiographies thoraciques

Lavage broncho-alvéolaire

Il est réalisé lors d'une bronchoscopie (caméra introduite par la injectant un liquide stérile aussitôt ré-aspiré. Certaines cellules Il permet de prélever des cellules des voies respiratoires en y bouche permettant de visualiser les bronches par l'intérieur). Cette procédure est toutefois risquée chez le chat de par la Il permet aussi de s'assurer qu'il n'y a pas de surinfection. sont caractéristiques des maladies bronchiques félines.

Exclusion des causes parasitaires

être discutée avec votre vétérinaire.

réactivité bronchique et son utilité dans le cas de votre chat doit

Il est conseillé d'effectuer l'examen sur 3 échantillons prélevés lors maladies bronchiques félines. Elles peuvent être recherchées par Certaines infections parasitaires peuvent mimer les signes de un examen des selles de votre animal (la coproscopie).

Certaines maladies parasitaires sont diagnostiquées par une recherche d'antigènes ou d'anticorps dans le sang. de 3 jours consécutifs.

LÉGENDE

Une anesthésie est nécessaire et peut nécessaire

comporter un risque

Les analyses sont envoyées dans un laboratoire spécialisé.

Les résultats ne seront pas disponibles immédiatement

COMMENT TRAITER LES MALADIES BRONCHIQUES FÉLINES

TRAITEMENT

Anti-inflammatoires (corticoïdes)

Ils limitent l'inflammation bronchique donc la toux et l'hyperréactivité.

Voie d'administration	Principe actif	Avantages	Inconvénients
Orale	Prednisolone	Coût	Risque d'effets indésirables
Inhalée	Fluticasone	Très peu d'effets indésirables	Coût Technique
Injectable	Méthylprednisolone	Méthylprednisolone Pratique pour les chats difficiles à Risque d'effets indésirables médicaliser (1 injection 3 semaines) non contrôlé	Risque d'effets indésirables non contrôlé

utilisation sont disponibles dispositif particulier. Des La voie d'administration vidéos expliquant son inhalée nécessite un

de recherche. You Tube Entrez le nom du dispositif (AeroKat®) dans la barre

EFFETS INDÉSIRABLES NOTABLES : prise de poids, diabète sucré (se manifestant le plus souvent par une augmentation de la faim et de la soif), insuffisance cardiaque congestive (rare).

Bronchodilatateurs

Ils augmentent l'effet des anti-inflammatoires et favorisent la relaxation des bronches. Le principe actif le plus couramment utilisé est la terbutaline.

EFFETS INDÉSIRABLES NOTABLES : vomissements, diarrhée, troubles du ythme cardiaque, agitation, crises convulsives (rares)

Traitement antiparasitaire

L'ajout d'un traitement antiparasitaire, plus puissant que les vermifuges habituels permet d'écarter définitivement toute cause parasitaire de toux.

Tentative d'éviction des allergènes

votre chat peut profiter d'un isolement de son environnement habituel. Parlez-en avec votre vétérinaire.

Ciclosporine

immunitaire (rare)

Si l'état de votre chat ne répond pas aux traitements ci-dessus, ce médicament peut être utilisé. C'est un immunosuppresseur. EFFETS INDÉSIRABLES NOTABLES : diarrhée, vomissements, abattement (rare), anorexie (rare), défaillance du système

CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÈSE VÉTÉRINAIRE PAR VINCENT LEYNAUD . NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION.

RECOMMANDATIONS AU QUOTIDIEN

Maintenez un environnement propre

Maintenez votre chat à son poids idéal

Évitez les éléments pouvant provoquer la toux (fumée, aérosols, bougies parfumées, ...) . √. ∑. E ٦

Utilisez une litière non poussiéreuse et non parfumée

QUEL EST LE PRONOSTIC AVEC **LE TRAITEMENT**

Ç

Avec un traitement adapté et la mise en application des recommandations au quotidien, le pronostic est bon.

 Il se peut que votre chat ait besoin d'un traitement à vie.

50% de risques de rechuter. En général, une recommandations, votre chat présente environ Malgré le traitement médical et le suivi des simple réadaptation du traitement suffit.

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi, si votre chat présente :

> votre chat présente une crise d'asthme à votre domicile, vous pouvez l'interrompre en lui faisant inhaler à

S

EN CAS DE CRISE À LA MAISON

- De nouvelles crises (quelle que soit l'intensité)
- Une respiration difficile.
- Un abattement.

VentolineTM) jusqu'à 3 fois à 10 mn

d'intervalle

Contactez ensuite votre vétérinaire.

1 pulvérisation de salbutamol

l'aide d'un dispositif adapté :

- Une baisse d'appétit
- De la fièvre (T°C > 39,2°C)
- L'un des effets indésirables cités ci-

contre

Il faut qu'il soit vu rapidement par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

01 43 96 72 72

Service 7j/7, 24h/24

maladie de votre animal, vous pouvez joindre l'un des Pour tout autre problème ou question concernant la cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance.

Annexe 5. Document d'information médicale présentant la fibrose pulmonaire du chien

La FIBROSE PULMONAIRE

QU'EST-CE QUE LA FIBROSE PULMONAIRE

Lors de la respiration, l'oxygène (O₂) arrive dans l'organisme par une diffusion entre les alvéoles pulmonaires (structures terminant les petites bronches) et les vaisseaux sanguins. En cas de ibrose pulmonaire, la paroi pulmonaire qui sépare ces deux éléments s'épaissit progressivement ce qui limite l'apport d'oxygène. La cause de ce processus est encore nconnue

Fibrose pulmonaire

Situation normale

par l'épaississement de la paroi. Il en découle une hypoxie chronique (manque 'apport d'oxygène est limité d'oxygène sur le long cours) qui peut être néfaste pour votre chien.

Épaississement de la paroi

> /aisseau sanguin

pulmonaire

Paroi

saine

La fibrose pulmonaire peut provoquer une **fatigue importante avec intolérance à l'effort**, des difficultés respiratoires et aussi de la toux.

5 En plus de cette maladie, votre chien peut présenter d'autres affections cardiaques respiratoires. Demandez conseil à votre vétérinaire. Si elle n'est pas traitée, elle engendre une **hypertension pulmonaire** (pouvant fatiguer le cœur) et peut favoriser les surinfections bactériennes.

COMMENT LA DIAGNOSTIQUER

Les examens complémentaires ci-dessous ont un intérêt dans le diagnostic et le suivi de la maladie.

Radiographies thoraciques

Elles permettent:

- D'évaluer l'aspect des poumons de votre chien et juger ainsi de la gravité de la maladie.
- Dans certains cas, de révéler des signes secondaires d'hypertension pulmonaire.

Test de marche pendant 6 minutes

moins importante pendant 6 minutes. La distance mesurée peut permettre un suivi de la maladie (et donc de sa tolérance à l'effort) après mise en place du gravité de sa maladie, il sera capable de marcher sur une distance plus ou Il permet d'évaluer la capacité de votre chien à fournir un effort. Selon la traitement.

Échocardiographie

cause de la fréquence de cette complication, un contrôle échocardiographique surtout indiquée lors de suspicion d'hypertension pulmonaire ; cependant, à Elle permet d'évaluer le fonctionnement cardiaque de votre chien. Elle est régulier est recommandé.

Examen tomodensitométrique (scanner)

Il permet d'évaluer l'atteinte des poumons de votre chien de façon beaucoup plus précise que les radiographies. C'est donc un meilleur moyen de suivi de

Une sédation (moins risquée qu'une anesthésie générale) est nécessaire

Bronchoscopie et lavage broncho-alvéolaire

Leur principal intérêt est d'exclure d'autres maladies pouvant expliquer les possible de visualiser l'aspect des voies respiratoires de l'intérieur et d'en À l'aide d'une petite caméra introduite par la bouche de votre chien, il est prélever des cellules pouvant être anormales lors de certaines maladies respiratoires. Une anesthésie générale est toutefois nécessaire.

Biopsies pulmonaires

signes cliniques de votre chien.

C'est le seul moyen de diagnostiquer avec certitude une fibrose pulmonaire mais c'est également le plus invasif. Parlez-en à votre vétérinaire.

LÉGENDE

comporter un risque nécessaire et peut Zz

dans un laboratoire spécialisé. Les analyses sont envoyées disponibles immédiatement. Les résultats ne seront pas

Alvéole

COMMENT TRAITER LA FIBROSE PULMONAIRE?

cependant possible de ralentir sa progression et limiter son expression clinique grâce à des mesures hygiéniques La cause n'étant pas connue, il n'existe aucun traitement permettant de guérir votre chien de la fibrose pulmonaire. Il est (recommandations ci-dessous) et, si nécessaire, un traitement médical symptomatique.

RECOMMANDATIONS AU QUOTIDIEN

Maintenez votre chien à son poids idéal

Utilisez un harnais plutôt qu'un collier

Évitez le stress et les exercices trop intenses

TRAITEMENT MÉDICAL

Anti-inflammatoires

Ils diminuent la toux en **limitant l'inflammation pulmonaire**. Exemple de principes actif : prednisolone. **EFFETS INDÉSIRABLES NOTABLES**: augmentation de la faim et de la soif, prise de poids, maladies thromboemboliques pulmonaires (rares).

• Antitussifs

lls peuvent être utilisés si la toux est sèche et si les antiinflammatoires ne sont pas suffisants pour la contrôler. Exemples de principes actifs : pentoxyvérine, codéthyline.

EFFETS INDÉSIRABLES NOTABLES: sédation, constipation, perte d'efficacité.

N-acétylcystéine

Il s'agit d'un antioxydant pouvant permettre d'améliorer la fonction respiratoire de votre chien.

EFFETS INDÉSIRABLES NORABLES : Aucun

Inhibiteur de la phosphodiestérase de type 5

C'est le traitement de choix lors d'hypertension pulmonaire. Principe actif : sildénafil EFFETS INDÉSIRABLES NOTABLES: vomissements, diarrhée, rougeurs cutanées.

CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÈSE VÉTÉRINAIRE PAR VINCENT LEYNAUD. IL NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION.

QUEL EST LE PRONOSTIC AVEC

LE TRAITEMENT?

Étant donné l'absence de traitement spécifique, il est impossible d'empêcher la progression de la fibrose pulmonaire de votre animal.

Avec un traitement et des mesures hygiéniques adaptés, votre chien peut vivre encore plusieurs mois à plusieurs années avec sa maladie.

On estime que la moitié des chiens atteints de fibrose pulmonaire vivent plus d'un an avec le traitement.

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi, si votre animal présente :

Vous pourrez trouver des informations supplémentaires

sur la fibrose pulmonaire et son traitement sur le

site internet :

http://www.cvu.ulg.ac.be/cm

457501/fr/fibrose-

- Une aggravation soudaine de la toux
- Une respiration difficile.
 - Un abattement.
- Une baisse d'appétit.
- De la fièvre (T°C > 39,2°C)
- L'un des effets indésirables cités cicontre.

Il faut qu'il soit vu rapidement par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au :

Pour tout autre problème ou question concemant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance.

Annexe **6. Document** d'information médicale présentant la bronchopneumonie éosinophilique du chien

La BRONCHOPNEUMONIE ÉOSINOPHILIQUE du

Analyses sanguines

D'autres maladies pourraient être à l'origine de la toux de votre

COMMENT LA DIAGNOSTIQUER

chien. Des examens complémentaires sont donc nécessaires

pour confirmer la bronchopneumonie éosinophilique

permettent également de vérifier que votre animal va bien et qu'il ne Elles peuvent parfois révéler l'inflammation éosinophilique. Elles présente pas de risque pour subir une éventuelle anesthésie.

Radiographies thoraciques

Elles permettent:

- D'évaluer l'aspect des bronches et des poumons qui est souvent modifié lors de bronchopneumonie éosinophilique
 - De vérifier que votre chien n'a pas une autre maladie cardiaque ou respiratoire aggravant ses signes cliniques

Lavage broncho-alvéolaire

Il est réalisé lors d'une bronchoscopie (caméra introduite par la bouche permettant de visualiser les bronches par l'intérieur)

Il permet de prélever des cellules des voies respiratoires en y injectant un liquide stérile aussitôt ré-aspiré. Il permet de visualiser les granulocytes Outre le risque anesthésique, cette procédure est sans danger pour la éosinophiles, évocateurs de bronchopneumonie éosinophilique. Il permet aussi de s'assurer qu'il n'y a pas de surinfection vie de votre animal.

Exclusion des causes infectieuses

bronchopneumonie éosinophilique. Elles peuvent être recherchées par un consécutifs. Certaines maladies parasitaires sont diagnostiquées par une recherche d'antigène dans le sang, en particulier si votre chien a voyagé examen des selles de votre animal (la coproscopie). Il est conseillé d'effectuer l'examen sur 3 échantillons prélevés lors de 3 jours Certaines infections parasitaires peuvent mimer les signes de dans certaines régions (parlez-en avec votre vétérinaire).

LÉGENDE

Une prise de sang est

comporter un risque Une anesthésie est nécessaire et peut

dans un laboratoire spécialisé Les analyses sont envoyées Les résultats ne seront pas

QU'EST-CE QUE LA BRONCHOPNEUMONIE ÉOSINOPHILIQUE

Elle se caractérise par une inflammation bronchique et pulmonaire qui s'installe sur le long cours. Sa suspecté. En effet, le type d'inflammation (dite « éosinophilique ») lors de cette maladie est similaire à celui retrouvé lors d'allergies (infiltration par des cellules inflammatoires appelées granulocytes éosinophiles). cause n'est pas encore connue mais un processus allergique est

Bronche saine

Bronchopneumonie éosinophilique Irrégularités

Paroi bronchique

lumière bronchique et peuvent donc gêner le passage de l'air jusqu'aux Elles diminuent le diamètre de la suomnod

Elle provoque une irritation de la paroi bronchique et est responsable de la Inflammation éosinophilique

toux de votre chien.

Il est produit en plus grande quantité pas être correctement expulsé. s'accumule donc et diminue le

Mucus

à cause de l'inflammation et ne peut diamètre de la lumière bronchique.

Lumière bronchique

(passage de l'air)

La bronchopneumonie éosinophilique se manifeste classiquement par une toux mais elle peut aussi causer des difficultés respiratoires ou une intolérance à l'effort Si elle n'est pas traitée, elle peut s'étendre aux voies respiratoires hautes de votre chien (rhinite) ou encore favoriser des surinfections bactériennes.

COMMENT TRAITER LA BRONCHOPNEUMONIE ÉOSINOPHILIQUE

TRAITEMENT

Anti-inflammatoires

Ils limitent l'inflammation bronchique donc la toux et l'hyperréactivité.

Voie d'administration	Principe actif	Risque d'effets indésirables	Coût mensuel
Orale	Prednisolone	Important	Le moins cher
Inhalée	Fluticasone	Faible	Le plus cher

Les doses utilisées diminuent l'efficacité du système immunitaire de votre chien,

il est donc primordial d'avoir exclu toutes les causes infectieuses (bactériennes et parasitaires) avant de démarrer le traitement. EFFETS INDÉSIRABLES NOTABLES : prise de poids, augmentation de la faim et de la soif, prise de poids, maladies thromboemboliques pulmonaires (rares), effets liés à l'immunosuppression : maladies infectieuses, développement de tumeurs (rares).

Traitement antiparasitaire

L'ajout d'un traitement antiparasitaire plus puissant que les vermifuges habituels permet d'écarter définitivement toute cause parasitaire de toux.

CE DOCUMENT A ÉTÉ RÉALISÉ DANS LE CADRE D'UNE THÉSE VÉTÉRINAIRE PAR VINCENT LEYNAUD. IL NE VOUS ENCOURAGE EN AUCUN CAS À ENTREPRENDRE UNE AUTOMÉDICATION.

RECOMMANDATIONS AU QUOTIDIEN

Maintenez votre chien à son poids idéal

Maintenez un environnement propre

Utilisez un harnais plutôt qu'un collier

QUEL EST LE PRONOSTIC AVEC

LE TRAITEMENT?

Avec un traitement adapté et la mise en application des recommandations au quotidien, le pronostic est bon.

utilisation sont disponibles

sur internet.

dispositif particulier. Des

vidéos expliquant son

La voie d'administration

Il est possible qu'il continue de tousser malgré Il se peut que votre chien ait besoin d'un traitement à vie.

Sa qualité de vie sera toutefois bien meilleure ! le traitement.

Malgré toutes les mesures mises en œuvre, votre rechuter. En général, une simple réadaptation du traitement suffit. chien présente environ 50% de risques de

de recherche. You Tuine (AeroDawg®) dans la barre Entrez le nom du dispositif

CE QU'IL FAUT SURVEILLER

Il faut surveiller la survenue d'une récidive, d'une complication ou d'effets indésirables dus au traitement. Ainsi, si votre chien présente :

- Une aggravation de sa toux.
- Une respiration difficile. Un abattement.

 - Une baisse d'appétit.
- De la fièvre (T°C > 39,2°C)
- L'un des effets indésirables cités cicontre

Il faut qu'il soit vu rapidement par un vétérinaire.

EN CAS D'URGENCE

Avant de vous présenter au CHUVA, téléphonez au

01 43 96 72 72

Service 7j/7, 24h/24

Pour tout autre problème ou question concernant la maladie de votre animal, vous pouvez joindre l'un des cliniciens responsables grâce aux adresses mail indiquées sur l'ordonnance.

ÉLABORATION DE FICHES INFORMATIVES DESTINÉES AUX PROPRIÉTAIRES DE CHIENS ET DE CHATS ATTEINTS DE MALADIES RESPIRATOIRES CHRONIQUES

LEYNAUD Vincent

Résumé

Les maladies respiratoires chroniques présentent souvent un défi diagnostique et thérapeutique dans la pratique de la médecine vétérinaire. Pourtant, avec une prise en charge thérapeutique adéquate, il est très souvent possible d'assurer une qualité de vie convenable aux animaux affectés. Cette prise en charge passe par des mesures thérapeutiques et hygiéniques sur le long cours et nécessitent une implication maximale du propriétaire. L'éducation de celui-ci est donc un point majeur dans la gestion des maladies chroniques.

Ce travail propose tout d'abord un état des lieux des connaissances actuelles concernant les principales maladies respiratoires chroniques à savoir : le syndrome obstructif des races brachycéphales, la bronchite chronique canine, le collapsus trachéo-bronchique du chien, les maladies bronchiques félines, la fibrose pulmonaire du chien et la bronchopneumonie éosinophilique du chien. Ces données permettent d'alimenter les fiches éducatives dont l'élaboration est présentée dans une seconde partie. Ces fiches présentent les maladies et leur prise en charge d'une façon qui se veut compréhensible pour le plus grand nombre avec notamment des explications claires et des illustrations simples.

Mots clés

DOCUMENT PEDAGOGIQUE / INFORMATION / PROPRIÉTAIRE D'ANIMAUX DE COMPAGNIE / BRACHYCÉPHALE / BRONCHITE CHRONIQUE / COLLAPSUS TRACHÉAL / ASTHME / FIBROSE PULMONAIRE IDIOPATHIQUE / BRONCHOPNEUMONIE ÉOSINOPHILIQUE / CARNIVORE DOMESTIQUE / CHIEN / CHAT

Jury:

Président : Pr.

Directeur : Dr. G. BENCHEKROUN Assesseur : Dr. M. MANASSERO

ELABORAITON OF INFORMATIVE HANDOUTS FOR OWNERS OF DOGS AND CATS AFFECTED BY CHRONIC RESPIRATORY DISEASES

LEYNAUD Vincent

Summary

Chronic respiratory diseases often represent a diagnostic and therapeutic challenge in veterinary medicine. However, a suitable treatment often allows affected animals to reach a good quality of life. The treatment is based on both long-term medications and environmental improvements. A great involvement from the owner is thus required and goes through owner education, a key point in the management of chronic diseases.

This work reviews the current knowledge about some of the most frequent veterinary chronic respiratory diseases in France: the brachycephalic airway syndrome, the canine chronic bronchitis, the tracheal and bronchial collapse, the feline bronchial diseases, the canine idiopathic pulmonary fibrosis and the canine eosinophilic bronchopneumopathy. The second part of this work describes the way the informative handouts were created. These handouts provide explanations about the diseases and their treatments in a way that can be easily understood by most of unaware people, by the use of simple words and clear illustrations.

Keywords

EDUCATIONAL DOCUMENT / INFORMATION / OWNER / BRACHECEPHALIC / CHRONIC BRONCHITIS / TRACHEAL COLLAPSE / ASTHMA / IDIOPATHIC PULMONARY FIBROSIS / EOSINOPHILIC BRONCHOPNEUMOPATHY / CARNIVORE / DOG / CAT

Jury:

President: Pr.

Director : Dr. G. BENCHEKROUN Assessor : Dr. M. MANASSERO